Search results for "ATOMIC MASS"

showing 10 items of 103 documents

Direct mass measurements of cadmium and palladium isotopes and their double-βtransitionQvalues

2012

The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides Cd-106, Cd-108, Cd-110, Pd-106, Pd-108 and Pd-110 have been directly linked to the atomic mass standard.

PhysicsNuclear and High Energy PhysicsCadmiumchemistryIsotopes of palladiumDouble beta decaychemistry.chemical_elementNuclideAtomic physicsMass spectrometryISOLTRAPBeta decayAtomic massPhysical Review C
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…

ta114010308 nuclear & particles physicsChemistryElectron captureneutrinoless double-electron capturepenning trapQ-valuesCondensed Matter PhysicsPenning trap01 natural sciencesAtomic massNuclear physics0103 physical sciencesPhysical and Theoretical Chemistryydinfysiikka010306 general physicshigh-precision mass spectrometryInstrumentationSpectroscopyReliability (statistics)Ion cyclotron resonanceInternational Journal of Mass Spectrometry
researchProduct

Mass Spectroscopy in Penning Trap

2009

While mass spectrometry in Paul traps serves well mainly for molecular analysis in chemistry, Penning traps provide high accuracy and precision. The technique is based on the fact that the ratio of cyclotron frequencies ω c = (Q/M)B of two ions in the same magnetic field B gives directly the ratio of their masses ω c(1)/ω c(2) = M(2)/M(1). If carbon-12 as the standard of the atomic mass scale is used as reference, the mass of the ion of interest is obtained directly in atomic units. Although the cyclotron frequency is not an eigenfrequency of the Penning trap, it can be obtained from combinations of ω+, ω, and ω z as evident from the set of equations (1.31)-(1.33). In the ideal case of a pe…

lawQuadrupoleCyclotronPhysics::Atomic PhysicsIon trapAtomic physicsMass spectrometryPenning trapAtomic masslaw.inventionIonMagnetic field
researchProduct

The decay energy of the pure s-process nuclide ¹²³ Te

2016

Physics letters / B 758, 407 - 411 (2016). doi:10.1016/j.physletb.2016.04.059

Penning-trap mass spectrometryPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsElectron captureAtomic massesIonic bondingAstrophysicsMass spectrometry53001 natural scienceslcsh:QC1-999Atomic massNuclear physicsMassDecay energyTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530NuclidePräzisionsexperimente - Abteilung BlaumAtomic physics010306 general physicss-processlcsh:Physics
researchProduct

Resonance Ionization Mass Spectroscopy for Trace Analysis

1990

My first lecture at this Summer School on Applied Laser Spectroscopy dealt with the determination of nuclear ground-state properties, i.e. atomic mass M, the nuclear spin I, the magnetic dipole moment μ I, the spectroscopic quadrupole moment Q, and the changes in the mean-square charge radius δ(r2) A,A´ between isotopes with mass number A and A´. These quantities can be determined for stable, long-, or short-lived isotopes by mass spectrometry and optical spectroscopy. In the latter case, the hyperfine structure (HFS) and the volume effect of the isotope shift (IS) are determined in atomic levels or optical transitions. The state of the art mainly concerning short-lived nuclei is described …

Mass numberPhysicsCharge radiusInstrumental chemistryPhysics::Atomic PhysicsAtomic physicsThermal ionization mass spectrometryNuclear ExperimentSpectroscopyMass spectrometryHyperfine structureAtomic mass
researchProduct

The Q-value of tritium β-decay and the neutrino mass

2006

Abstract The paper discusses the influence of β -endpoint energies and related atomic mass values on the determination of the neutrino mass in present and future β -decay experiments with particular emphasis on the case of tritium decay

PhysicsParticle physicsQ valueSolar neutrinoSolar neutrino problemCondensed Matter PhysicsBeta decayAtomic massNuclear physicsMeasurements of neutrino speedHigh Energy Physics::ExperimentPhysical and Theoretical ChemistryNeutrinoNeutrino oscillationInstrumentationSpectroscopyInternational Journal of Mass Spectrometry
researchProduct

$Q$-value of the superallowed $\beta$ decay of 62Ga

2006

Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.

Nuclear and High Energy PhysicsMass excessQ valuePenning trapCyclotronFOS: Physical sciences27.50.+e; 23.40.-s; 24.80.+g; 21.10.Dr[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyIonlaw.inventionNuclear physicslawDouble beta decayFt value0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsRadionuclide010308 nuclear & particles physicsBeta decayQ-valueAtomic massAtomic mass
researchProduct

Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc

2021

Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…

CHARGE RADIINuclear and High Energy PhysicsProtonCollinear laser spectroscopyQC1-999spektroskopiaNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-ex01 natural sciencesPhysics Particles & FieldsCharge radius0103 physical sciencesPhysics::Atomic and Molecular Clustersddc:530NeutronNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsisotoopitScience & TechnologyIsotopeMagnetic moment010308 nuclear & particles physicsPhysicsProton-neutron pairingTABLEHyperfine structure and isotope shiftAtomic mass3. Good healthCharge radiusPhysics NuclearPairingPhysical SciencesSHELL-MODELAtomic physicsydinfysiikkaGround stateskandiumPhysics Letters B
researchProduct

α-decay properties ofPb181

1996

The isotope {sup 181}Pb was produced in {sup 92}Mo bombardments of {sup 90}Zr and, together with other reaction products, was passed through a recoil mass separator and implanted in a double-sided silicon strip detector for {alpha}-particle assay. The half-life and energy of the main {sup 181}Pb {alpha} transition were determined to be 45 (20) ms and 7065 (20) keV, respectively. This {sup 181}Pb {ital E}{sub {alpha}} agrees with one previously measured value [7044 (15) keV], but not with the one [7211 (10) keV] used as input to the 1993 Atomic Mass Evaluation. The 6180-keV {alpha} transition assigned to {sup 181}Tl by Bolshakov {ital et} {ital al}. was observed, but the 6566-keV {alpha} par…

PhysicsNuclear and High Energy PhysicsRecoilSiliconchemistryIsotopeAnalytical chemistrychemistry.chemical_elementAlpha particleAlpha decayAtomic massPhysical Review C
researchProduct

High-accuracy mass spectrometry with stored ions

2006

Abstract Like few other parameters, the mass of an atom, and its inherent connection with the atomic and nuclear binding energy is a fundamental property, a unique fingerprint of the atomic nucleus. Each nuclide comes with its own mass value different from all others. For short-lived exotic atomic nuclei the importance of its mass ranges from the verification of nuclear models to a test of the Standard Model, in particular with regard to the weak interaction and the unitarity of the Cabibbo–Kobayashi–Maskawa quark mixing matrix. In addition, accurate mass values are important for a variety of applications that extend beyond nuclear physics. Mass measurements on stable atoms now reach a rela…

PhysicsNuclear physicsAtomic nucleusAtomGeneral Physics and AstronomyNuclear binding energyPhysics::Atomic PhysicsNuclideMass spectrometryPenning trapISOLTRAPAtomic massPhysics Reports
researchProduct