Search results for "Accretion disc"
showing 10 items of 74 documents
QPO emission from moving hot spots on the surface of neutron stars: a model
2009
We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …
X-ray spectroscopy of MXB 1728-34 with XMM-Newton
2011
We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…
The jets and disc of SS 433 at super-Eddington luminosities
2009
We examine the jets and the disc of SS 433 at super-Eddington luminosities with 600 times Eddington critical accretion rate by time-dependent two-dimensional radiation hydrodynamical calculations, assuming alpha-model for the viscosity. One-dimensional supercritical accretion disc models with mass loss or advection are used as the initial configurations of the disc. As a result, from the initial advective disc models with alpha =0.001 and 0.1, we obtain the total luminosities 2.5x10^{40} and 2.0x10^{40} erg/s. The total mass-outflow rates are 4x10^{-5} and 10^{-4} solar-mass/yr and the rates of the relativistic axial outflows in a small half opening angle of 1 degree are about 10^{-6} solar…
Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1
2014
When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different co…
The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst
2012
(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…
A transient ultraluminous X-ray source in NGC 55
2022
Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 10$^{39}$ erg s$^{-1}$. The average number of ULXs per galaxy is still not well constrained, especially given the uncertainty on the fraction of ULX transients. Here, we report the identification of a new transient ULX in the galaxy NGC 55 (which we label as ULX-2), thanks to recent XMM-Newton and the Neil Gehrels Swift Observatory observations. This object was previously classified as a transient X-ray source with a luminosity around a few 10$^{38}$ erg s$^{-1}$ in a 2010 XMM-Newton observation. Thanks to new and deeper observations ($\sim$ 130 ks each), we show that the source reaches…
Unveiling the disc structure in ultraluminous X-ray source NGC 55 ULX-1
2022
Ultraluminous X-ray sources (ULXs) are the most extreme among X-ray binaries in which the compact object, a neutron star or a black hole, accretes matter from the companion star, and exceeds a luminosity of 1039 ergs−1 in the X-ray energy band alone. Despite two decades of studies, it is still not clear whether ULX spectral transitions are due to stochastic variability in the wind or variations in the accretion rate or in the source geometry. The compact object is also unknown for most ULXs. In order to place constraints on to such scenarios and on the structure of the accretion disc, we studied the temporal evolution of the spectral components of the variable source NGC 55 ULX-1. Using rec…
MAXI J1957+032: a new accreting millisecond X-ray pulsar in an ultra-compact binary
2022
The detection of coherent X-ray pulsations at ~314 Hz (3.2 ms) classifies MAXI J1957+032 as a fast-rotating, accreting neutron star. We present the temporal and spectral analysis performed using NICER observations collected during the latest outburst of the source. Doppler modulation of the X-ray pulsation revealed the ultra-compact nature of the binary system characterised by an orbital period of ~1 hour and a projected semi-major axis of 14 lt-ms. The neutron star binary mass function suggests a minimum donor mass of 1.7e-2 Msun, assuming a neutron star mass of 1.4 Msun and a binary inclination angle lower than 60 degrees. This assumption is supported by the lack of eclipses or dips in th…
Accretion disk coronae of Intermediate Polar Cataclysmic Variables: 3D MagnetoHydroDynamic modeling and thermal X-ray emission
Intermediate Polar Cataclysmic Variables (IPCVs), also known as DQ Her stars after their prototype, are cataclysmic variable stars characterized by the presence of an accreting, magnetic, rapidly rotating white dwarf surrounded by an accretion disk magnetically truncated by the inner magnetosphere of the star. These objects exhibit a magnetic field of the order of few MG, able to disrupt the inner part of the disk but not strong enough to inhibit the formation of a disk. These stars show a strong X-ray emission with a stochastic pulsation that in some cases arise in the inner part of the disk. However, the observations of the X-ray luminosity for these objects do not match the expected valu…
The long outburst of the black hole transient GRS 1716-249 observed in the X-ray and radio band
2018
We present the spectral and timing analysis of X-ray observations performed on the Galactic black hole transient GRS 1716-249 during the 2016-2017 outburst. The source was almost continuously observed with the Neil Gehrels Swift Observatory from December 2016 until October 2017. The X-ray hardness ratio and timing evolution indicate that the source approached the soft state three times during the outburst, even though it never reached the canonical soft spectral state. Thus, GRS 1716-249 increases the number of black hole transients showing outbursts with "failed" state transition. During the softening events, XRT and BAT broadband spectral modeling, performed with thermal Comptonization pl…