Search results for "Actor"

showing 10 items of 19159 documents

Gene regulation in parthenocarpic tomato fruit.

2009

Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlatio…

0106 biological sciencesPhysiologyParthenogenesisPlant Biologyseedless fruitPlant SciencetomatoParthenocarpy01 natural sciencesSolanum lycopersicumGene Expression Regulation PlantGene expressionArabidopsis thalianaHormone metabolismPlant Proteins2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyfood and beveragesRipeningPlantsPlants Genetically ModifiedResearch PapersBiochemistryMetabolomeBiotechnologyCrop and Pasture ProductionINOPlant Biology & Botanyfruit ripeningGenetically Modified03 medical and health sciencesparthenocarpicAuxinBotanyGeneticsGenetically modified tomatoLycopersicon esculentum030304 developmental biologyNutritionfruit quality fruit ripening INO parthenocarpic seedless fruit tomato.Arabidopsis Proteinsfungifruit qualityPlantbiology.organism_classificationSeedless fruitchemistryGene Expression RegulationFruit010606 plant biology & botanyTranscription Factors
researchProduct

Purification and characterization of geranyl diphosphate synthase from Vitis vinifera L. cv Muscat de Frontignant cell cultures

1993

A geranyl diphosphate synthase (EC 2.5.1.1), which catalyzes the formation of geranyl diphosphate from dimethylallyl diphosphate and isopentenyl diphosphate, was isolated from Vitis vinifera L. cv Muscat de Frontignan cell cultures. Purification of the enzyme was achieved successively by ammonium sulfate precipitation and chromatography on DEAE-Sephacel, hydroxylapatite, Mono Q, Phenyl Superose, Superose 12, and preparative nondenaturing polyacrylamide gels. The enzyme formed only geranyl diphosphate as a product. In all cases, neither neryl diphosphate, the cis isomer, nor farnesyl diphosphate was detected. The enzyme showed a native molecular mass of 68 [plus or minus] 5 kD as determined …

0106 biological sciencesPhysiologyStereochemistry[SDV]Life Sciences [q-bio]PolyacrylamidePlant Science01 natural sciencesCofactor[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compound[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsSodium dodecyl sulfateAmmonium sulfate precipitationComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesbiologyMolecular mass[SDV] Life Sciences [q-bio]EnzymechemistryCell cultureCULTURE DE CELLULEbiology.proteinCis–trans isomerism010606 plant biology & botanyResearch Article
researchProduct

Microbial inoculation for improving the growth and health of micropropagated strawberry

2004

Multimicrobial inoculation has been proposed as a way of protecting plants against environmental stress and increasing the sustainability of plant production. To study these possibilities in a micropropagation system, microplants of strawberry, Fragaria × ananssa, were inoculated or left uninoculated with five microorganisms ( Glomus mosseae BEG29, Bacillus subtilis M3, Trichoderma harzianumDB11, Pseudomonas fluorescensC7r12 and Gliocladium catenulatumGliomix ® ), used either singly or in dual mixtures in the presence or absence of the strawberry diseases crown rot ( Phytophthora cactorum) and red stele (P. fragariae). Finnish light Sphagnum peat was used as the growth substrate in the expe…

0106 biological sciencesPhytophthora cactorum[SDV]Life Sciences [q-bio]Soil ScienceBiologyRhizobacteria01 natural sciencesBotanyFRAISIERGlomusComputingMilieux_MISCELLANEOUS2. Zero hungerEcologyInoculation04 agricultural and veterinary sciencesFragariabiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)[SDV] Life Sciences [q-bio]HorticultureMicropropagationTrichodermaShoot040103 agronomy & agriculture0401 agriculture forestry and fisheries010606 plant biology & botany
researchProduct

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes

1999

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterolcontaining phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, u…

0106 biological sciencesPhytophthoraTime FactorsStigmasterolBiophysics01 natural sciencesMicelleBiochemistryFluorescenceFungal Proteins03 medical and health scienceschemistry.chemical_compoundErgosterolpolycyclic compoundsMicellesPlant Proteins030304 developmental biology0303 health sciencesLiposomeStigmasterolChemistryVesicleAlgal ProteinsCell MembraneProteinsElicitinBiological membraneLipid–protein interactionCell BiologyPlantsElicitinSterolsCholesterolMembraneBiochemistryDehydroergosterolLiposomeslipids (amino acids peptides and proteins)CryptogeinCarrier ProteinsFluorescence anisotropy010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Current view of nitric oxide-responsive genes in plants

2009

International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive …

0106 biological sciencesPlant ScienceBiology01 natural sciencesNitric oxide synthase-like enzymeTranscriptomic analysisTranscriptome03 medical and health sciencesL-NAME[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyTranscription (biology)Complementary DNAArabidopsisGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGeneTranscription factor030304 developmental biologyGenetics0303 health sciencesBiotic and abiotic stressesNitric oxide-responsive genesPromoterNitric oxideGeneral Medicinebiology.organism_classificationStress biotiqueDNA microarrayAgronomy and Crop Science010606 plant biology & botany
researchProduct

Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam

2016

The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g m(-3) hour(-1) and at an empty bed residence time (EBRT) of 12.5s. Under an IL of ∼130 g m(-3) hour(-1), BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106±7 and 68±8 g m(-3) hour(-1), respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation inte…

0106 biological sciencesPolyurethanesMicrobacteriumBioengineeringChryseobacterium010501 environmental sciences01 natural sciencesBiotecnologiaMicrobiologyBioreactorsAir Pollution010608 biotechnologyMolecular Biology0105 earth and related environmental sciencesAir filterVolatile Organic CompoundsChromatographySewagebiologyPseudomonas putidaChemistryPseudomonasGeneral Medicinebiology.organism_classificationPseudomonas putidaBiodegradation EnvironmentalActivated sludgeAir FiltersWastewaterEthylene GlycolsFiltrationTemperature gradient gel electrophoresisAire ContaminacióBiotechnology
researchProduct

Short-term response of the slow growing seagrass Posidonia oceanica to simulated anchor impact

2007

Experimental evaluations about the impact of anchors of small vessels have previously shown that each anchoring can on average damage up to six shoots of Posidonia oceanica, removing small amount of biomass and, at the same time, interrupting continuity among shoots. The aim of the paper was to investigate the response of P. oceanica to different damage intensity at two levels of substrata compactness. Three treatments were considered: control (no damage); low damage (simulated anchor damage by three strokes of a hoe); and high damage (six strokes). Disturbance was higher where the substratum was highly penetrable and after one year significant variation was observed among treatments for bo…

0106 biological sciencesPotamogetonaceaeTime FactorsAquatic ScienceOceanography010603 evolutionary biology01 natural sciencesBotanyMediterranean Sea14. Life underwaterShipsAnalysis of VarianceBiomass (ecology)AlismatalesbiologyPhenology010604 marine biology & hydrobiologyfood and beveragesGeneral Medicinebiology.organism_classificationPollutionSea grassHorticultureSeagrassItalyPosidonia oceanicaShootSlow GrowingEnvironmental MonitoringMarine Environmental Research
researchProduct

Obtaining antioxidants and natural preservatives from food by-products through fermentation: A review

2021

Industrial food waste has potential for generating income from high-added-value compounds through fermentation. Solid-state fermentation is promising to obtain a high yield of bioactive compounds while requiring less water for the microorganism’s growth. A number of scientific studies evinced an increase in flavonoids or phenolics from fruit or vegetable waste and bioactive peptides from cereal processing residues and whey, a major waste of the dairy industry. Livestock, fish, or shellfish processing by-products (skin, viscera, fish scales, seabass colon, shrimp waste) also has the possibility of generating antioxidant peptides, hydrolysates, or compounds through fermentation. These bioacti…

0106 biological sciencesPreservativeAntioxidantantioxidantMicroorganismmedicine.medical_treatmentFermentation industries. Beverages. AlcoholFood spoilagePlant ScienceAntifungal01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Hydrolysate0404 agricultural biotechnology010608 biotechnologymedicineBioreactorFood sciencefermentationFood by-productsTP500-660Chemistryfood and beverages04 agricultural and veterinary sciences040401 food scienceFood wasteFermentationFermentationfood by-productsAntioxidantantifungalFood ScienceFermentation
researchProduct

Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic m…

2019

[EN] Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and …

0106 biological sciencesRumenEnvironmental EngineeringMicroorganismBioengineering010501 environmental sciencesWaste Disposal Fluid01 natural sciencesMethanosaetaBioreactorsBiogasMicrobial ecologyBioenergyRNA Ribosomal 16S010608 biotechnologyMicroalgaeBioreactorAnimalsAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologyAnaerobic membrane bioreactor (AnMBR)Renewable Energy Sustainability and the EnvironmentChemistryMicrobiotaGeneral MedicineBiogasMicroalgaeBiodegradationbiology.organism_classificationPulp and paper industryMicrobial population biologyBiofuels16S rRNA geneMethaneBioresource Technology
researchProduct

Soil health through soil disease suppression: Which strategy from descriptors to indicators?

2007

International audience; Soil is a component of primary importance in crop production, even if it is often neglected, or only regarded as a physical support for the growth of plants. However, with the increasing societal concerns for the sustainability of agriculture, soil must be considered as a living system. Its quality results from the multiple interactions among physicochemical and biological components, notably the microbial communities, primordial for soil function. Crops are threatened by soil-borne diseases. These are often difficult to control, because of the “hidden” status of the pathogens and also because of the absence, noxiousness or lack of efficacy of chemical treatments. In…

0106 biological sciencesSOIL QUALITYmedia_common.quotation_subjectdata analysisSOIL HEALTHmicrobial communitiesSoil ScienceContext (language use)BIOTIC AND ABIOTIC FACTORS[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studycomplex mixtures01 natural sciencesMicrobiologyDATA ANALYSISdisease suppressionCULTURAL PRACTICESCultural practiceQuality (business)soil qualityMICROBIAL COMMUNITIESINDICATORmedia_commoncultural practicesbiotic and abiotic factors2. Zero hungerSoil healthsoil healthbusiness.industryEcologyindicatorEnvironmental resource managementDISEASE SUPPRESSIONSANTE DU SOL04 agricultural and veterinary sciences15. Life on landSoil qualityAgricultureSustainability040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental sciencebusiness010606 plant biology & botanyDiversity (politics)Soil Biology and Biochemistry
researchProduct