Search results for "Actuator"
showing 10 items of 161 documents
Optimization design process of a morphing winglet
2018
Aeronautic and aerospace engineering is recently moving in the direction of developing morphing wing devices, with the aim of making adaptable the aerodynamic shapes to different operational conditions. Those devices may be classified according to two different conceptual architectures: kinematic or compliant systems. Both of them embed within their body all the active components (actuators and sensors), necessary to their operations. In the first case, the geometry variation is achieved through an augmented classical mechanism, while in the second case the form modification is due to a special arrangement of the inner structure creating a distributed elastic hinges arrangement. Whatever is…
Computational Analysis of the Active Control of Incompressible Airfoil Flutter Vibration Using a Piezoelectric V-Stack Actuator
2021
The flutter phenomenon is a potentially destructive aeroelastic vibration studied for the design of aircraft structures as it limits the flight envelope of the aircraft. The aim of this work is to propose a heuristic design of a piezoelectric actuator-based controller for flutter vibration suppression in order to extend the allowable speed range of the structure. Based on the numerical model of a three degrees of freedom (3DOF) airfoil and taking into account the FEM model of a V-stack piezoelectric actuator, a filtered PID controller is tuned using the population decline swarm optimizer PDSO algorithm, and gain scheduling (GS) of the controller parameters is used to make the control adapti…
An Intelligent System for Energy Efficiency in a Complex of Buildings
2012
Energy efficiency has nowadays become one of the most challenging task for both academic and commercial organizations, and this has boosted research on novel fields, such as Ambient Intelligence. In this paper we address the issue of timely and ubiquitous monitoring of building complexes in order to optimize their energy consumption, and present an intelligent system addressed to the typical end user, i.e. the administrator, or responsible operator, of the complex. A three-level architecture has been designed for detecting the presence of the building inhabitants user and understanding their preferences with respect to the environmental conditions in order to optimize the overall energy eff…
A Self-Contained Electro-Hydraulic Cylinder: Modeling, Control Design, Simulation and Experimental Validation
2018
Master's thesis Mechatronics MAS500 - University of Agder 2018 In the constant effort to improve the efficiency of hydraulic systems, the pressure drop over hydraulic valves has been one of the major obstacles. In the Self-Contained Electro-Hydraulic Cylinder, the directional valve and the hydraulic power unit have been replaced by a bi-directional axial piston pump and a Permanent Magnet Synchronous Motor. Actuation of the cylinder is performed by controlling the direction of rotation and the velocity of the motor. Originally the purpose of this project was to: "Design a proper control algorithm for an existing novel selfcontained electro-hydraulic cylinder, implement it on the main boom o…
Study of the performances of a fluidynamic actuator
2018
Aim of this paper is presented a new methodology to study how different geometric parameters affect the performance of a hydraulic actuator. Preliminarily, the real working conditions of a hydraulic machine have been simulated by means of a CFD module. After, to test the reliability of the simulations, the obtained numerical results have been compared with the experimental data of a real prototype. This comparison demonstrates a good level of agreement between numerical and experimental results. Different simulations have been setup by modifying the actuator geometry and evaluating the efficiency of every analysed configuration. The results of this study give useful guidelines for the choic…
CFD parametric analysis and experimental results on a hydraulic actuator
2014
Modelling and Control of a 2-DOF Robot Arm with Elastic Joints for Safe Human-Robot Interaction
2021
Collaborative robots (or cobots) are robots that can safely work together or interact with humans in a common space. They gradually become noticeable nowadays. Compliant actuators are very relevant for the design of cobots. This type of actuation scheme mitigates the damage caused by unexpected collision. Therefore, elastic joints are considered to outperform rigid joints when operating in a dynamic environment. However, most of the available elastic robots are relatively costly or difficult to construct. To give researchers a solution that is inexpensive, easily customisable, and fast to fabricate, a newly-designed low-cost, and open-source design of an elastic joint is presented in this w…
A method for smoothly disengaging the load-holding valves of energy-efficient electro-hydraulic systems
2020
A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop o…
Study of a Self-Contained Electro-Hydraulic Cylinder Drive
2018
Self-contained electro-hydraulic cylinders that can be powered just by an electrical wire will be popular in the coming years. Combining electrical-drives and hydraulic cylin- ders exploits some excellent properties of these two technologies and enables flexible implementation. To fully benefit from such a drive solution, there is the need to develop electro-hydraulic cylinders capable of operating independently as opposed to standard hydraulic systems that are connected to a central power supply. Therefore, this paper presents a numerical investigation of a self-contained electro-hydraulic cylinder with passive load- holding capability. The corresponding dynamic model is proposed and used …
An Online Observer for Minimization of Pulsating Torque in SMPM Motors.
2015
A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method.