Search results for "Aerospace Engineering"
showing 10 items of 378 documents
Non-linear systems under delta correlated processes handled by perturbation theory
1998
Statistical responses in terms of moment and correlation functions of non-linear systems driven by non-normal delta correlated external pulses are derived. The procedure takes full advantage of the perturbation theory approach. Then, by means of a proper coordinate transformation, the system is replaced by a quasi-linear system for which the statistical quantities can be exactly found.
Identification of linear parameter varying models
2002
We consider identification of a certain class of discrete-time nonlinear systems known as linear parameter varying system. We assume that inputs, outputs and the scheduling parameters are directly measured, and a form of the functional dependence of the system coefficients on the parameters is known. We show how this identification problem can be reduced to a linear regression, and provide compact formulae for the corresponding least mean square and recursive least-squares algorithms. We derive conditions on persistency of excitation in terms of the inputs and scheduling parameter trajectories when the functional dependence is of polynomial type. These conditions have a natural polynomial i…
Non-linear Systems Under Poisson White Noise Handled by Path Integral Solution
2008
An extension of the path integral to non-linear systems driven by a Poissonian white noise process is presented. It is shown that at the limit when the time increment becomes infinitesimal the Kolmogorov— Feller equation is fully restored. Applications to linear and non-linear systems with different distribution of the Dirac's deltas occurrences are performed and results are compared with analytical solutions (when available) and Monte Carlo simulation.
Higher order statistics of the response of MDOF linear systems excited by linearly parametric white noises and external excitations
1997
The aim of this paper is the evaluation of higher order statistics of the response of linear systems subjected to external excitations and to linearly parametric white noise. The external excitations considered are deterministic or filtered white noise processes. The procedure implies the knowledge of the transition matrix connected to the linear system; this, however, has already been evaluated for obtaining the statistics at single times. The method, which avoids making further integrations for the evaluation of the higher order statistics, is very advantageous from a computational point of view.
Higher order statistics of the response of MDOF linear systems under polynomials of filtered normal white noises
1997
This paper exploits the work presented in the companion paper in order to evaluate the higher order statistics of the response of linear systems excited by polynomials of filtered normal processes. In fact, by means of a variable transformation, the original system is replaced by a linear one excited by external and linearly parametric white noise excitations. The transition matrix of the new enlarged system is obtained simply once the transition matrices of the original system and of the filter are evaluated. The method is then applied in order to evaluate the higher order statistics of the approximate response of nonlinear systems to which the pseudo-force method is applied.
Path integral solution handled by Fast Gauss Transform
2009
Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…
Approximate solution of the Fokker-Planck-Kolmogorov equation
2002
The aim of this paper is to present a thorough investigation of approximate techniques for estimating the stationary and non-stationary probability density function (PDF) of the response of nonlinear systems subjected to (additive and/or multiplicative) Gaussian white noise excitations. Attention is focused on the general scheme of weighted residuals for the approximate solution of the Fokker-Planck-Kolmogorov (FPK) equation. It is shown that the main drawbacks of closure schemes, such as negative values of the PDF in some regions, may be overcome by rewriting the FPK equation in terms of log-probability density function (log-PDF). The criteria for selecting the set of weighting functions i…
Direct evaluation of jumps for nonlinear systems under external and multiplicative impulses
2015
In this paper the problem of the response evaluation of nonlinear systems under multiplicative impulsive input is treated. Such systems exhibit a jump at each impulse occurrence, whose value cannot be predicted through the classical differential calculus. In this context here the correct jump evaluation of nonlinear systems is obtained in closed form for two general classes of nonlinear multiplicative functions. Analysis has been performed to show the different typical behaviors of the response, which in some cases could diverge or converge to zero instantaneously, depending on the amplitude of the Dirac's delta.
Higher order statistics of the response of linear systems excited by polynomials of filtered Poisson pulses
1999
The higher order statistics of the response of linear systems excited by polynomials of filtered Poisson pulses are evaluated by means of knowledge of the first order statistics and without any further integration. This is made possible by a coordinate transformation which replaces the original system by a quasi-linear one with parametric Poisson delta-correlated input; and, for these systems, a simple relationship between first order and higher order statistics is found in which the transition matrix of the dynamical new system, incremented by the correction terms necessary to apply the Ito calculus, appears.
Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments
2014
In this paper, the probabilistic characterization of a nonlinear system enforced by Poissonian white noise in terms of complex fractional moments (CFMs) is presented. The main advantage in using such quantities, instead of the integer moments, relies on the fact that, through the CFMs the probability density function (PDF) is restituted in the whole domain. In fact, the inverse Mellin transform returns the PDF by performing integration along the imaginary axis of the Mellin transform, while the real part remains fixed. This ensures that the PDF is restituted in the whole range with exception of the value in zero, in which singularities appear. It is shown that using Mellin transform theorem…