Search results for "Affective computing"

showing 10 items of 22 documents

On the Influence of Affect in EEG-Based Subject Identification

2021

Biometric signals have been extensively used for user identification and authentication due to their inherent characteristics that are unique to each person. The variation exhibited between the brain signals (EEG) of different people makes such signals especially suitable for biometric user identification. However, the characteristics of these signals are also influenced by the user’s current condition, including his/her affective state. In this paper, we analyze the significance of the affect-related component of brain signals within the subject identification context. Consistent results are obtained across three different public datasets, suggesting that the dominant component of the sign…

021110 strategic defence & security studiesAuthenticationBiometricsmedicine.diagnostic_testbusiness.industryComputer science0211 other engineering and technologiesContext (language use)Pattern recognition02 engineering and technologyElectroencephalographyHuman-Computer InteractionIdentification (information)Component (UML)0202 electrical engineering electronic engineering information engineeringTask analysismedicine020201 artificial intelligence & image processingArtificial intelligencebusinessAffective computingSoftwareIEEE Transactions on Affective Computing
researchProduct

Lateralization of directional brain-heart information transfer during visual emotional elicitation

2019

Previous studies have characterized the physiological interactions between central nervous system (brain) and peripheral cardiovascular system (heart) during affective elicitation in healthy subjects; however, questions related to the directionality of this functional interplay have been gaining less attention from the scientific community. Here, we explore brain-heart interactions during visual emotional elicitation in healthy subjects using measures of Granger causality (GC), a widely used descriptor of causal influences between two dynamical systems. The proposed approach inferences causality between instantaneous cardiovagal dynamics estimated from inhomogeneous point-process models of…

AdultInformation transferPhysiologyCentral nervous systemEmotions01 natural sciencesLateralization of brain function03 medical and health sciencesElectrocardiography0302 clinical medicineGranger causalityHeart RatePhysiology (medical)0103 physical sciencesmedicineinformation transferHumans010306 general physicsAffective computingaffective computingpoint processBrainElectroencephalographyHeartbrain-heart interactionAffective computing; Brain-heart interaction; Granger causality; Information transfer; Point processmedicine.anatomical_structureRespiratory Physiological PhenomenaGranger causalityFemalePsychologyNeuroscience030217 neurology & neurosurgeryPhotic Stimulation
researchProduct

Quantitative comparison of motion history image variants for video-based depression assessment

2017

Abstract Depression is the most prevalent mood disorder and a leading cause of disability worldwide. Automated video-based analyses may afford objective measures to support clinical judgments. In the present paper, categorical depression assessment is addressed by proposing a novel variant of the Motion History Image (MHI) which considers Gabor-inhibited filtered data instead of the original image. Classification results obtained with this method on the AVEC’14 dataset are compared to those derived using (a) an earlier MHI variant, the Landmark Motion History Image (LMHI), and (b) the original MHI. The different motion representations were tested in several combinations of appearance-based …

BiometricsComputer scienceSpeech recognitionlcsh:TK7800-836002 engineering and technologyConvolutional neural networkMotion (physics)[SPI]Engineering Sciences [physics]Image processingMachine learning0502 economics and business[ SPI ] Engineering Sciences [physics]0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringCategorical variableComputingMilieux_MISCELLANEOUSLandmarkbusiness.industrylcsh:Electronics05 social sciencesAffective computingFacial image analysisPattern recognitionMotion history imageMoodSignal ProcessingPattern recognition (psychology)Depression assessment020201 artificial intelligence & image processingArtificial intelligenceF1 scorebusiness050203 business & managementInformation SystemsEURASIP Journal on Image and Video Processing
researchProduct

Class discovery from semi-structured EEG data for affective computing and personalisation

2017

The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Many approaches to recognising emotions from metrical data such as EEG signals rely on identifying a very small number of classes and to train a classifier. The interpretation of these classes varies from a single emotion such as stress [24] to features of emotional model such as valence-arousal [4]. There are two major issues here. First classification approach limits the analysis of the data within the selected classes and is also highly dependent on training data/cycles, all of which limits generalisation. Second issue is that it does not exp…

Brain modelingComputer scienceFeature extraction02 engineering and technologyElectroencephalographyMachine learningcomputer.software_genrePersonalizationCorrelationDEAP03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineCluster analysisAffective computingmedicine.diagnostic_testbusiness.industryElectroencephalographySelf-organizing feature mapsFeature extraction020201 artificial intelligence & image processingArtificial intelligenceEmotion recognitionbusinessClassifier (UML)computer030217 neurology & neurosurgery
researchProduct

Artificial intelligence for affective computing : an emotion recognition case study.

2020

This chapter provides an introduction on the benefits of artificial intelligence (Al) techniques for the field of affective computing, through a case study about emotion recognition via brain (electroencephalography EEG) signals. Readers are first pro-vided with a general description of the field, followed by the main models of human affect, with special emphasis to Russell's circumplex model and the pleasur-arousal-dominance (PAD) model. Finally, an AI-based method for the detection of affect elicited via multimedia stimuli is presented. The method combines both connectivity-and channel-based EEG features with a selection method that considerably reduces the dimensionality of the data and …

Channel (digital image)medicine.diagnostic_testLogarithmComputer sciencebusiness.industryFeature selectionMutual informationElectroencephalographyField (computer science)Frequency domainmedicineArtificial intelligenceAffective computingbusiness
researchProduct

Combining Supervised and Unsupervised Learning to Discover Emotional Classes

2017

Most previous work in emotion recognition has fixed the available classes in advance, and attempted to classify samples into one of these classes using a supervised learning approach. In this paper, we present preliminary work on combining supervised and unsupervised learning to discover potential latent classes which were not initially considered. To illustrate the potential of this hybrid approach, we have used a Self-Organizing Map (SOM) to organize a large number of Electroencephalogram (EEG) signals from subjects watching videos, according to their internal structure. Results suggest that a more useful labelling scheme could be produced by analysing the resulting topology in relation t…

Computer science050109 social psychologyuser modelling02 engineering and technologyMachine learningcomputer.software_genrePersonalization0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesEmotion recognitionEEGValence (psychology)Affective computingaffective computingclass discoverybusiness.industry05 social sciencesSupervised learningPattern recognitionHybrid approachComputingMethodologies_PATTERNRECOGNITIONUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputercluster analysis
researchProduct

Feature Extraction and Selection for Pain Recognition Using Peripheral Physiological Signals.

2019

In pattern recognition, the selection of appropriate features is paramount to both the performance and the robustness of the system. Over-reliance on machine learning-based feature selection methods can, therefore, be problematic; especially when conducted using small snapshots of data. The results of these methods, if adopted without proper interpretation, can lead to sub-optimal system design or worse, the abandonment of otherwise viable and important features. In this work, a deep exploration of pain-based emotion classification was conducted to better understand differences in the results of the related literature. In total, 155 different time domain and frequency domain features were e…

Computer scienceFeature vectorFeature extractionFeature selection02 engineering and technologyphysiological signalslcsh:RC321-57103 medical and health sciences0302 clinical medicineEMGfeature selectionChartemotion recognition0202 electrical engineering electronic engineering information engineeringaffective computinglcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchheat painmultimodal analysisbusiness.industryGeneral NeuroscienceDeep learningDimensionality reductionfeature extractionPattern recognitionFeature (computer vision)Pattern recognition (psychology)020201 artificial intelligence & image processingArtificial intelligencebusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in neuroscience
researchProduct

Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text

2016

International audience; Depression is a major cause of disability world-wide. The present paper reports on the results of our participation to the depression sub-challenge of the sixth Audio/Visual Emotion Challenge (AVEC 2016), which was designed to compare feature modalities ( audio, visual, interview transcript-based) in gender-based and gender-independent modes using a variety of classification algorithms. In our approach, both high and low level features were assessed in each modality. Audio features were extracted from the low-level descriptors provided by the challenge organizers. Several visual features were extracted and assessed including dynamic characteristics of facial elements…

Computer scienceSpeech recognitionPosterior probabilitymultimodal fusionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI]Engineering Sciences [physics]AVEC 2016Histogram0202 electrical engineering electronic engineering information engineeringFeature (machine learning)[ SPI ] Engineering Sciences [physics]Affective computingaffective computing[ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]speech processing[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Modality (human–computer interaction)[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph]pattern recognition020206 networking & telecommunicationsSpeech processingimage processingStatistical classificationdepression assessment13. Climate actionPattern recognition (psychology)020201 artificial intelligence & image processing
researchProduct

Machine Learning Techniques for Automatic Depression Assessment

2018

Depression is one of the most common mood disorder that is inherently related to emotions, involving bad mood, low self-esteem and loss of interest in normal pleasurable activities. The aim of this work is to develop a framework based on the dataset provided by AVEC'14 for depression assessment. The proposed work presents two different motion representation methods: a) Gabor Motion History Image (GMHI), and b) Motion History Image (MHI). Several combinations of appearance-based low level features are extracted from both motion representations. These features were further combined with statistically derived features, and used for training and testing with several machine learning techniques.…

Computer sciencebusiness.industryWork (physics)020207 software engineering02 engineering and technologyMachine learningcomputer.software_genreMotion (physics)Image (mathematics)Mood0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessRepresentation (mathematics)Affective computingF1 scorecomputer2018 41st International Conference on Telecommunications and Signal Processing (TSP)
researchProduct

Emotional Business Intelligence

2014

The domain of Emotional Business Intelligence (EBI) aims to support business-relevant emotional and emotion-aware decisions in addition to rational decision making. EBI originates from three root domains: Emotional Business, Emotional Intelligence and Business Intelligence (BI). In this paper we emphasize emotional empowerment of the traditional BI function; outline its main characteristics as a business working model of an emotionally smart, continuously learning organization; and introduce a first candidate of the EBI Toolkit, the FeelingsExplorer (FE). FE is a mash-up browser based on 4i (“ForEye”) technology, capable of visualizing objects in an emotional semantic space and thereby supp…

Decision support systemKnowledge managementbusiness.industryComputer scienceEmotional intelligencemedia_common.quotation_subjectLearning organizationRational planning modelMetadataBusiness intelligencebusinessAffective computingFunction (engineering)media_common2014 7th International Conference on Human System Interactions (HSI)
researchProduct