Search results for "Aggrecan"
showing 10 items of 21 documents
In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study
2017
Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem c…
Molecular interactions between human cartilaginous endplates and nucleus pulposus cells: a preliminary investigation.
2014
Study Design. Conditioned media (CM) of cartilaginous endplates (CEPs) of intervertebral discs were analyzed in a bioassay with regard to their influence on matrix turnover and inflammatory factors on nucleus pulposus (NP) cells of the same patient. CEP tissue underwent further histological and ultrastructural analysis. Objective. To identify possible interactions between the CEP and the disc via molecular factors that may influence disc matrix degradation and to determine degenerative changes of CEP tissue. Summary of Background Data. Impaired endplate perme-ability due to degeneration and calcification is considered to be a key contributor to disc degeneration. An upregulation of metallop…
Distribution of Cartilage Proteoglycan (Aggrecan) Core Protein and Link Protein Gene Expression during Human Skeletal Development
1991
The distribution of cartilage proteoglycan core protein (aggrecan) and cartilage proteoglycan link protein was investigated by in situ hybridization during different stages of human skeletal development. Aggrecan and link protein expression were confined to chondrocytes of the developing skeleton and other cartilaginous structures. Distribution and intensity of the signal was identical with aggrecan as compared to link protein probes. Parallel to the calcification of cartilaginous matrix, chondrocytes of this area lost the expression of aggrecan and link protein specific mRNA and stayed negative throughout the following stages of skeletal development. Highest expression was found in the low…
In vitro 30 nm silver nanoparticles promote chondrogenesis of human mesenchymal stem cells
2015
Silver nanoparticles (Ag NPs) are one of the most widely used products in nano-medicine due to their broad-spectrum antimicrobial activity. In tissue engineering, Ag NPs are often incorporated as antibacterial agents in scaffolds, which are subsequently loaded with human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we investigated the effect of Ag NPs on chondrogenesis of hMSCs. The synthesized Ag NPs were spherical in shape, with a mean diameter of ∼30 nm. After 24 h exposure, Ag NPs were taken up into hMSCs and mainly distributed in the cytoplasm, the nucleus and different sized vesicles. We examined the chondrogenesis through several methods, including glycosaminogl…
Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes
2007
Pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and other catabolic factors participate in the pathogenesis of cartilage damage in osteoarthritis (OA). Pro-inflammatory cytokines such as interleukin-1β (IL-1β) mediate cartilage degradation and might be involved in the progression of OA. Previously, we found that haem oxygenase-1 (HO-1) is down-regulated by pro-inflammatory cytokines and up-regulated by IL-10 in OA chondrocytes. The aim of this study was to determine whether HO-1 can modify the catabolic effects of IL-1β in OA cartilage and chondrocytes. Up-regulation of HO-1 by cobalt protoporphyrin IX significantly reduced glycosaminoglycan degradation elicited by IL-1β in OA …
PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on p…
2016
Damage of hyaline cartilage species such as nasoseptal or joint cartilage requires proper reconstruction, which remains challenging due to the low intrinsic repair capacity of this tissue. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. The aim of this work was to assess the viability, attachment, morphology, extracellular matrix (ECM) production of human articular and nasoseptal chondrocytes cultured in vitro in porous poly(L-lactic) (PLLA) scaffolds of two selected pore sizes (100 and 200 μm). The PLLA scaffolds with 100 and 200 μm pore sizes were prepared via ternary thermally induced ph…
Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering
2021
Abstract Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH …
Morphogenetically active scaffold for osteochondral repair (Polyphosphate/alginate/N,O-carboxymethyl chitosan)
2016
Here we describe a novel bioinspired hydrogel material that can be hardened with calcium ions to yield a scaffold material with viscoelastic properties matching those of cartilage. This material consists of a negatively charged biopolymer triplet, composed of morphogenetically active natural inorganic polyphosphate (polyP), along with the likewise biocompatible natural polymers N,O-carboxymethyl chitosan (N,O-CMC) and alginate. The porosity of the hardened scaffold material obtained after calcium exposure can be adjusted by varying the pre-processing conditions. Various compression tests were applied to determine the local (nanoindentation) and bulk mechanical properties (tensile/compressio…
Expression patterns of matrix genes during human skeletal development.
1994
A bio-imitating approach to fabricate an artificial matrix for cartilage tissue engineering using magnesium-polyphosphate and hyaluronic acid
2016
Here we describe an artificial cartilage-like material based on a hyaluronic acid-Mg/Ca-polyphosphate paste (HA-aMg/Ca-polyP-p) that is fabricated from a water-soluble Na-salt of energy-rich inorganic polyphosphate (polyP) and soluble hyaluronic acid in the presence of water-insoluble CaCO3. The resulting material, after conversion of Na-polyP into the less soluble Mg/Ca-salt consisting of amorphous Mg/Ca-polyP microparticles, was found to mimic the physiological cartilage tissue and to bind Ca2+ ions present in the synovial fluid. After the Mg2+/Ca2+ exchange and water extrusion, the polyP becomes more stable, but is still susceptible to hydrolytic cleavage by the alkaline phosphatase (ALP…