Search results for "Aggrecans"

showing 9 items of 9 documents

Distribution of Cartilage Proteoglycan (Aggrecan) Core Protein and Link Protein Gene Expression during Human Skeletal Development

1991

The distribution of cartilage proteoglycan core protein (aggrecan) and cartilage proteoglycan link protein was investigated by in situ hybridization during different stages of human skeletal development. Aggrecan and link protein expression were confined to chondrocytes of the developing skeleton and other cartilaginous structures. Distribution and intensity of the signal was identical with aggrecan as compared to link protein probes. Parallel to the calcification of cartilaginous matrix, chondrocytes of this area lost the expression of aggrecan and link protein specific mRNA and stayed negative throughout the following stages of skeletal development. Highest expression was found in the low…

Bone and BonesChondrocyteRNA ComplementaryPseudoachondroplasiaRheumatologyGene expressionmedicineHumansLectins C-TypeRNA AntisenseAggrecansAggrecanExtracellular Matrix ProteinsMessenger RNABone DevelopmentbiologyCartilageBinding proteinInfant NewbornNucleic Acid HybridizationProteinsDNAmusculoskeletal systemmedicine.diseaseMolecular biologycarbohydrates (lipids)Bone Diseases MetabolicCartilagemedicine.anatomical_structureGene Expression RegulationProteoglycanProtein Biosynthesisbiology.proteinRNAProteoglycansMatrix
researchProduct

Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.

2019

Abstract Background Anthocyanidins are plant phytochemicals found at high concentrations in berries, vegetables and flowers. Anthocyanidins have been extensively investigated due to their antioxidative, antidiabetic and anti-inflammatory effects. Few studies show that anthocyanidins decrease obesity and improve bone density. However, the effects of anthocyanidins on tissue regeneration have not been sufficiently clarified. Human mesenchymal stem cells (MSCs) are multipotent adult stem cells responsible for the regeneration of fat, bone and cartilage. Although MSCs are often used for screening of biologically active compounds, so far, the effect of anthocyanidins on MSC differentiation has n…

Pharmaceutical ScienceOsteocytesAnthocyanins03 medical and health scienceschemistry.chemical_compound0302 clinical medicineChondrocytesOsteogenesisDrug DiscoveryAdipocytesHumansAggrecansCells Cultured030304 developmental biologyAnthocyanidinPharmacology0303 health sciencesAdipogenesisMesenchymal stem cellfood and beveragesCell DifferentiationMesenchymal Stem CellsChondrogenesisMalvidinCell biologyAnthocyanidinsComplementary and alternative medicinechemistryAdipose TissueGene Expression RegulationAdipogenesis030220 oncology & carcinogenesisMolecular MedicineMesenchymal stem cell differentiationAnti-Obesity AgentsDelphinidinChondrogenesisPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Morphogenetically active scaffold for osteochondral repair (Polyphosphate/alginate/N,O-carboxymethyl chitosan)

2016

Here we describe a novel bioinspired hydrogel material that can be hardened with calcium ions to yield a scaffold material with viscoelastic properties matching those of cartilage. This material consists of a negatively charged biopolymer triplet, composed of morphogenetically active natural inorganic polyphosphate (polyP), along with the likewise biocompatible natural polymers N,O-carboxymethyl chitosan (N,O-CMC) and alginate. The porosity of the hardened scaffold material obtained after calcium exposure can be adjusted by varying the pre-processing conditions. Various compression tests were applied to determine the local (nanoindentation) and bulk mechanical properties (tensile/compressio…

Cartilage ArticularScaffoldlcsh:Diseases of the musculoskeletal systemO-Carboxymethyl chitosanBiocompatible Materials02 engineering and technology01 natural sciencesHydrogel Polyethylene Glycol DimethacrylateChitosanchemistry.chemical_compoundGlucuronic AcidTissue engineeringPolyphosphatesAggrecansTissue ScaffoldsHexuronic AcidsN021001 nanoscience & nanotechnologymedicine.anatomical_structuretissue engineering0210 nano-technologyPorosityAlginatesEpiphyseal platelcsh:Surgeryregenerative medicineengineering.material010402 general chemistryOsteocytesChondrocytesUltimate tensile strengthmedicineHumansRegenerationCollagen Type IIAggrecanCell ProliferationChitosanWound HealingCartilagepolyphosphatelcsh:RD1-811Alkaline Phosphatase0104 chemical sciencesCartilagechemistryengineeringCalciumBiopolymerlcsh:RC925-935Biomedical engineering
researchProduct

Expression patterns of matrix genes during human skeletal development.

1994

Extracellular Matrix ProteinsHistologyBone DevelopmentChemistryClinical BiochemistryCell DifferentiationCell BiologyComputational biologyExpression (computer science)Cartilage Oligomeric Matrix ProteinAlkaline PhosphataseMatrix (mathematics)Gene Expression RegulationProtein BiosynthesisBiglycanHumansMatrilin ProteinsLectins C-TypeOsteonectinProteoglycansAggrecansCollagenDecorinGeneGlycoproteinsProgress in histochemistry and cytochemistry
researchProduct

Microvesicles shed by oligodendroglioma cells and rheumatoid synovial fibroblasts contain aggrecanase activity

2012

Membrane microvesicle shedding is an active process and occurs in viable cells with no signs of apoptosis or necrosis. We report here that microvesicles shed by oligodendroglioma cells contain an ‘aggrecanase’ activity, cleaving aggrecan at sites previously identified as targets for adamalysin metalloproteinases with disintegrin and thrombospondin domains (ADAMTSs). Degradation was inhibited by EDTA, the metalloproteinase inhibitor GM6001 and by tissue inhibitor of metalloproteinases (TIMP)-3, but not by TIMP-1 or TIMP-2. This inhibitor profile indicates that the shed microvesicles contain aggrecanolytic ADAMTS(s) or related TIMP-3-sensitive metalloproteinase(s). The oligodendroglioma cells…

OligodendrogliomaMembrane vesicleRA rheumatoid arthritisADAMTSMatrix metalloproteinaseCell Physiological PhenomenaAdamalysin03 medical and health sciences0302 clinical medicineSettore BIO/10 - BiochimicaEndopeptidasesHumansAggrecansADAM adamalysinADAMTS a disintegrin and metalloproteinase with thrombospondin motifsMolecular BiologyMetalloproteinase030304 developmental biologyAggrecanaseTissue Inhibitor of Metalloproteinase-3MEF mouse embryonic fibroblasts0303 health sciencesMetalloproteinaseChemistryBrief ReportMVs microvesiclesADAMTSMicrovesicleCytoplasmic VesiclesDipeptidesFibroblastsMolecular biologyRecombinant ProteinsMicrovesiclesECM extracellular matrixMembrane vesiclesCell biologyEnzyme ActivationMMP matrix metalloproteinaseADAM ProteinsADAMTS4030220 oncology & carcinogenesisProteolysisADAMTS5 ProteinRheumatic FeverTIMP tissue inhibitor of metalloproteinaseAggrecan
researchProduct

Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells

2015

Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultur…

Stromal cellBiomedical EngineeringType II collagenCell Culture TechniquesBioengineeringBiochemistryBiomaterialsExtracellular matrixTransforming Growth Factor beta1ChondrocytesNasal CartilagesmedicineHumansAggrecansAggrecanCells CulturedGlycosaminoglycansExtracellular Matrix ProteinsChemistryCartilageMesenchymal stem cellMesenchymal Stem CellsSOX9 Transcription FactorOriginal ArticlesChondrogenesisMolecular biologyCulture Mediamedicine.anatomical_structureBiochemistryPolyglutamic AcidCulture Media ConditionedCalciumCollagenStromal CellsChondrogenesisType I collagen
researchProduct

Molecular interactions between human cartilaginous endplates and nucleus pulposus cells: a preliminary investigation.

2014

Study Design. Conditioned media (CM) of cartilaginous endplates (CEPs) of intervertebral discs were analyzed in a bioassay with regard to their influence on matrix turnover and inflammatory factors on nucleus pulposus (NP) cells of the same patient. CEP tissue underwent further histological and ultrastructural analysis. Objective. To identify possible interactions between the CEP and the disc via molecular factors that may influence disc matrix degradation and to determine degenerative changes of CEP tissue. Summary of Background Data. Impaired endplate perme-ability due to degeneration and calcification is considered to be a key contributor to disc degeneration. An upregulation of metallop…

AdultMalePathologymedicine.medical_specialtyCellIntervertebral Disc DegenerationMatrix metalloproteinaseMatrix (biology)Proinflammatory cytokineDownregulation and upregulationMatrix Metalloproteinase 13MedicineHumansOrthopedics and Sports MedicineAggrecansIntervertebral DiscAggrecanCells CulturedAgedbusiness.industryInterleukin-6Interleukin-8Middle AgedCell biologyTissue Degenerationmedicine.anatomical_structureCartilageTumor necrosis factor alphaFemaleMatrix Metalloproteinase 3Neurology (clinical)businessSpine
researchProduct

The Carbon Monoxide-Releasing Molecule Tricarbonyldichlororuthenium(II) Dimer Protects Human Osteoarthritic Chondrocytes and Cartilage from the Catab…

2008

We have investigated the effects of a carbon monoxide-releasing molecule, tricarbonyldichlororuthenium(II) dimer (CORM-2), on catabolic processes in human osteoarthritis (OA) cartilage and chondrocytes activated with interleukin-1beta. In these cells, proinflammatory cytokines induce the synthesis of matrix metalloproteinases (MMPs) and aggrecanases, including members of a disintegrin and metalloproteinase with thrombospondin domain (ADAMTS) family, which may contribute to cartilage loss. CORM-2 down-regulated MMP-1, MMP-3, MMP-10, MMP-13, and ADAMTS-5 in OA chondrocytes, and it inhibited cartilage degradation. These effects were accompanied by increased aggrecan synthesis and collagen II e…

MaleInterleukin-1betaDown-RegulationMatrix metalloproteinaseProtective AgentsProinflammatory cytokineExtracellular matrixChondrocytesOsteoarthritisOrganometallic CompoundsmedicineExtracellularHumansAggrecansCollagen Type IIAggrecanAgedPharmacologyCarbon MonoxideThrombospondinChemistryCartilageADAMTSMatrix MetalloproteinasesCell biologyCartilagemedicine.anatomical_structureBiochemistryMolecular MedicineFemaleJournal of Pharmacology and Experimental Therapeutics
researchProduct

Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. A Morphological Study

2020

Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG&rsquo

MaleSettore BIO/17 - IstologiaSapogeninsTime Factorscycloastragenolhuman adipose-derived mesenchymal stem cellsArticleExtracellular matrixchemistry.chemical_compoundTissue engineeringchondrocyte phenotypemedicineHumansCycloastragenolAggrecanscartilage regenerationCell Shapelcsh:QH301-705.5AggrecanCells CulturedGlycoproteinsGlycosaminoglycansCell DeathChemistryCartilageRegeneration (biology)Mesenchymal stem cellCell DifferentiationMesenchymal Stem CellsSOX9 Transcription FactorGeneral MedicineMiddle AgedChondrogenesisCell biologycartilage regeneration; chondrocyte phenotype; cycloastragenol; human adipose-derived mesenchymal stem cells; hypertrophy; tissue engineeringmedicine.anatomical_structurelcsh:Biology (General)tissue engineeringFemaleCollagenhypertrophyChondrogenesiscartilage regeneration; chondrocyte phenotype; cycloastragenol; human adipose-derived mesenchymal stem cells; hypertrophy; tissue engineering; Aggrecans; Cell Death; Cell Differentiation; Cell Shape; Cells Cultured; Chondrogenesis; Collagen; Female; Glycoproteins; Glycosaminoglycans; Humans; Male; Mesenchymal Stem Cells; Middle Aged; SOX9 Transcription Factor; Sapogenins; Time FactorsCells
researchProduct