Search results for "Aldehyde Dehydrogenase"
showing 10 items of 46 documents
Monitoring White Blood Cell Mitochondrial Aldehyde Dehydrogenase Activity: Implications for Nitrate Therapy in Humans
2009
Recent animal data suggest that reduced lipoic acid (LA) prevents oxidative inhibition of the nitrate bioactivating enzyme, the mitochondrial aldehyde dehydrogenase (ALDH-2), and that pentaerythritol tetranitrate (PETN) does not induce nitrate tolerance because of its intrinsic antioxidative properties, thereby preserving ALDH-2 activity. We sought to determine whether ALDH-2 activity in circulating white blood cells (WBCs) can be used to monitor nitrate tolerance and whether LA can prevent nitroglycerin tachyphylaxis in humans. Eight healthy male volunteers received, in randomized order, a single dose of glyceryl trinitrate (GTN; 0.8 mg), PETN (80 mg), or GTN plus LA (600 mg) orally. GTN (…
Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-glutathionylation of endothelial nitric oxide synth…
2011
Continuous administration of nitroglycerin (GTN) causes tolerance and endothelial dysfunction by inducing reactive oxygen species (ROS) production from various enzymatic sources, such as mitochondria, NADPH oxidase, and an uncoupled endothelial nitric oxide synthase (eNOS). In the present study, we tested the effects of type 1 angiotensin (AT(1))-receptor blockade with telmisartan on GTN-induced endothelial dysfunction in particular on eNOS phosphorylation and S-glutathionylation sites and the eNOS cofactor synthesizing enzyme GTP-cyclohydrolase I.Wistar rats were treated with telmisartan (2.7 or 8 mg/kg per day PO for 10 days) and with GTN (50 mg/kg per day SC for 3 days). Aortic eNOS phos…
Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants.
2006
Nitroglycerin (GTN) tolerance was induced in vivo (rats) and in vitro (rat and human vessels). Electrochemical detection revealed that the incubation dose of GTN (5×10 −6 mol/L) did not release NO or modify O 2 consumption when administered acutely. However, development of tolerance produced a decrease in both mitochondrial O 2 consumption and the K m for O 2 in animal and human vessels and endothelial cells in a noncompetitive action. GTN tolerance has been associated with impairment of GTN biotransformation through inhibition of aldehyde dehydrogenase (ALDH)-2, and with uncoupling of mitochondrial respiration. Feeding rats with mitochondrial-targeted antioxidants (mitoquinone [MQ]) and i…
Hydralazine is a powerful inhibitor of peroxynitrite formation as a possible explanation for its beneficial effects on prognosis in patients with con…
2005
The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Hydralazine has been shown to prevent tolerance in experimental and clinical studies, all of which may be at least in part secondary to antioxidant properties of this compound. The antioxidant effects of hydralazine were tested in cell free systems, cultured smooth muscle cells, isolated mitochondria, and isolated vessels. Inhibitory effects on the formation of superoxide and/or peroxynitrite formation were tested using lucigenin and L-012 enhanced chemiluminescence as well as DHE-fluorescence. The peroxynitrite scavenging properties were also assessed by…
Oxidative Inhibition of the Mitochondrial Aldehyde Dehydrogenase Promotes Nitroglycerin Tolerance in Human Blood Vessels
2007
Objectives We tested the hypothesis of whether an inhibition of the nitroglycerin (GTN) bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) contributes to GTN tolerance in human blood vessels. Background The hemodynamic effects of GTN are rapidly blunted by the development of tolerance, a phenomenon associated with increased formation of reactive oxygen species (ROS). Recent studies suggest that ROS-induced inhibition of ALDH-2 accounts for tolerance in animal models. Methods Segments of surgically removed arteria mammaria and vena saphena from patients undergoing coronary bypass surgery were used to examine the vascular responsiveness to GTN and the endothelium-dependent vas…
ALDH-2 deficiency increases cardiovascular oxidative stress--evidence for indirect antioxidative properties.
2007
Abstract Mitochondrial aldehyde dehydrogenase (ALDH-2) reduces reactive oxygen species (ROS) formation related to toxic aldehydes; additionally, it provides a bioactivating pathway for nitroglycerin. Since acetaldehyde, nitroglycerin, and doxorubicin treatment provoke mitochondrial oxidative stress, we used ALDH-2−/− mice and purified recombinant human ALDH-2 to test the hypothesis that ALDH-2 has an indirect antioxidant function in mitochondria. Antioxidant capacity of purified ALDH-2 was comparable to equimolar doses of glutathione, cysteine, and dithiothreitol; mitochondrial oxidative stress was comparable in C57Bl6 and ALDH-2−/− mice after acute challenges with nitroglycerin or doxorubi…
Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/-): a novel approach to assess the role of oxidative stress for the develo…
2005
Nitroglycerin (GTN)-induced tolerance was reported to be associated with increased levels of reactive oxygen species (ROS) in mitochondria. In the present study, we further investigated the role of ROS for the development of nitrate tolerance by using heterozygous manganese superoxide dismutase knock-out mice (Mn-SOD+/-). Mn-SOD is acknowledged as a major sink for mitochondrial superoxide. Vasodilator potency of mouse aorta in response to acetylcholine and GTN was assessed by isometric tension studies. Mitochondrial ROS formation was detected by 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt (L-012)-enhanced chemiluminescence and mitochondrial aldehyde dehydro…
Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dys…
2008
AimsImbalance between pro- and antioxidant species (e.g. during aging) plays a crucial role for vascular function and is associated with oxidative gene regulation and modification. Vascular aging is associated with progressive deterioration of vascular homeostasis leading to reduced relaxation, hypertrophy, and a higher risk of thrombotic events. These effects can be explained by a reduction in free bioavailable nitric oxide that is inactivated by an age-dependent increase in superoxide formation. In the present study, mitochondria as a source of reactive oxygen species (ROS) and the contribution of manganese superoxide dismutase (MnSOD, SOD-2) and aldehyde dehydrogenase (ALDH-2) were inves…
Evidence for a relationship between mitochondrial Complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: effects…
2012
The medical use of nitroglycerin (GTN) is limited by patient tolerance. The present study evaluated the role of mitochondrial Complex I in GIN biotransformation and the therapeutic effect of mitochondrial antioxidants. The development of GIN tolerance (in rat and human vessels) produced a decrease in mitochondrial 02 consumption. Co-incubation with the mitochondria-targeted antioxidant mitoquinone (MQ 10(-6) mol/L) or with glutathione ester (GEE, 10(-4) mol/L) blocked GTN tolerance and the effects of GTN on mitochondrial respiration and aldehyde dehydrogenase 2 (ALDH-2) activity. Biotransformation of GTN depended on the mitochondria being functionally active, particularly mitochondrial Comp…
Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice
2006
Abstract Background Chronic therapy with nitroglycerin (GTN) results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS). According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT) and heterozygous manganese superoxide dismutase mice (Mn-SOD+/-) with ethanolic solution of GTN (12.5 μg/min/kg for 4 d). For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 1…