Search results for "Algebra"
showing 10 items of 4129 documents
A note on the rational canonical form of an endomorphism of a vector space of finite dimension
2018
[EN] In this note, we give an easy algorithm to construct the rational canonical form of a square matrix or an endomorphism h of a finite dimensional vector space which does not depend on either the structure theorem for finitely generated modules over principal ideal domains or matrices over the polynomial ring. The algorithm is based on the construction of an element whose minimum polynomial coincides with the minimum polynomial of the endomorphism and on the fact that the h-invariant subspace generated by such an element admits an h-invariant complement. It is also shown that this element can be easily obtained without the factorisation of a polynomial as a product of irreducible polynom…
Forcing for First-Order Languages from the Perspective of Rasiowa–Sikorski Lemma
2017
The paper is concerned with the problem of building models for first-order languages from the perspective of the classic paper of Rasiowa and Sikorski [9]. The central idea, developed in this paper, consists in constructing first-order models from individual variables. The key notion of a Rasiowa–Sikorski set of formulas for an arbitrary countable language L is examined. Each Rasiowa–Sikorski set defines a countable model for L . Conversely, every countable model for L is determined by a Rasiowa–Sikorski set. The focus is on constructing Rasiowa–Sikorski sets by applying forcing techniques restricted to Boolean algebras arising from the subsets of the set of atomic formulas of L .
Group graded algebras and almost polynomial growth
2011
Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.
Obstruction theory in action accessible categories
2013
Abstract We show that, in semi-abelian action accessible categories (such as the categories of groups, Lie algebras, rings, associative algebras and Poisson algebras), the obstruction to the existence of extensions is classified by the second cohomology group in the sense of Bourn. Moreover, we describe explicitly the obstruction to the existence of extensions in the case of Leibniz algebras, comparing Bourn cohomology with Loday–Pirashvili cohomology of Leibniz algebras.
On the focal subgroup of a saturated fusion system
2016
Abstract The influence of the cyclic subgroups of order p or 4 of the focal subgroup of a saturated fusion system F over a p -group S is investigated in this paper. Some criteria for normality of S in F as well as necessary and sufficient conditions for nilpotency of F are given. The resistance of a p -group in which every cyclic subgroup of order p or 4 is normal, and earlier results about p -nilpotence of finite groups and nilpotency of saturated fusion systems are consequences of our study.
Rationalizability of square roots
2021
Abstract Feynman integral computations in theoretical high energy particle physics frequently involve square roots in the kinematic variables. Physicists often want to solve Feynman integrals in terms of multiple polylogarithms. One way to obtain a solution in terms of these functions is to rationalize all occurring square roots by a suitable variable change. In this paper, we give a rigorous definition of rationalizability for square roots of ratios of polynomials. We show that the problem of deciding whether a single square root is rationalizable can be reformulated in geometrical terms. Using this approach, we give easy criteria to decide rationalizability in most cases of square roots i…