Search results for "Algebra"

showing 10 items of 4129 documents

The Abelian Kernel of an Inverse Semigroup

2020

The problem of computing the abelian kernel of a finite semigroup was first solved by Delgado describing an algorithm that decides whether a given element of a finite semigroup S belongs to the abelian kernel. Steinberg extended the result for any variety of abelian groups with decidable membership. In this paper, we used a completely different approach to complete these results by giving an exact description of the abelian kernel of an inverse semigroup. An abelian group that gives this abelian kernel was also constructed.

profinite topologiesPure mathematicsabelian kernelsSemigroupGeneral Mathematicslcsh:Mathematics010102 general mathematicsfinite semigroup010103 numerical & computational mathematicslcsh:QA1-93901 natural sciencesDecidabilityextension problemKernel (algebra)Inverse semigroupComputer Science (miscellaneous)0101 mathematicsAbelian groupVariety (universal algebra)Element (category theory)partial automorphismsEngineering (miscellaneous)MathematicsMathematics
researchProduct

Modal Consequence Relations Extending S4.3: An Application of Projective Unification

2016

We characterize all finitary consequence relations over $\mathbf{S4.3}$ , both syntactically, by exhibiting so-called (admissible) passive rules that extend the given logic, and semantically, by providing suitable strongly adequate classes of algebras. This is achieved by applying an earlier result stating that a modal logic $L$ extending $\mathbf{S4}$ has projective unification if and only if $L$ contains $\mathbf{S4.3}$ . In particular, we show that these consequence relations enjoy the strong finite model property, and are finitely based. In this way, we extend the known results by Bull and Fine, from logics, to consequence relations. We also show that the lattice of consequence relation…

projective unificationPure mathematicsUnificationLogicFinite model property02 engineering and technology68T15Lattice (discrete subgroup)01 natural sciencesadmissible rulesComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringCountable setFinitaryHeyting algebra08C150101 mathematics03B45MathematicsDiscrete mathematics010102 general mathematicsquasivarietiesModal logicstructural completenessconsequence relations03B35Distributive property06E25$\mathbf{S4.3}$S4.3020201 artificial intelligence & image processingNotre Dame Journal of Formal Logic
researchProduct

Automated Checking of Flexible Mathematical Reasoning in the Case of Systems of (In)Equations and the Absolute Value Operator

2021

We present an approach and a tool for automatically providing feedback on solutions that involve complicated reasoning patterns. Currently the tool supports linear systems of equations and inequations that may also contain the absolute value operator and a restricted form of rational functions. This suffices for designing problems that are laborious to solve with standard mechanical procedures, but much easier using short-cuts that students may find by creative thinking. Earlier research has found that struggling with important mathematics promotes conceptual development. Our goal is to encourage students to such struggling. A crucial feature is to give them great freedom to choose the path…

päättelymatematiikkaComputer sciencepalauteElementary University MathematicsAbsolute value (algebra)matemaattinen ajatteluMathematical reasoningAutomatic FeedbackHigher Order Thinking SkillsAlgebraOperator (computer programming)High School Mathematicsopetusohjelmat (tietokoneohjelmat)tietokoneavusteinen oppiminenjärkeilyeLearning SoftwareNon-trivial Reasoning Patterns
researchProduct

Resolvent estimates for elliptic quadratic differential operators

2011

Sharp resolvent bounds for non-selfadjoint semiclassical elliptic quadratic differential operators are established, in the interior of the range of the associated quadratic symbol.

quadratic differential operatorSemiclassical physics47A10 35P05 15A63 53D2215A6353D22spectrumMathematics - Spectral TheoryMathematics - Analysis of PDEsQuadratic equationFOS: Mathematicsnonselfadjoint operator35P05Quadratic differentialSpectral Theory (math.SP)ResolventMathematicsNumerical AnalysisMathematics::Operator AlgebrasApplied MathematicsMathematical analysisSpectrum (functional analysis)resolvent estimateMathematics::Spectral TheoryDifferential operator47A10Range (mathematics)FBI-Bargmann transformAnalysisAnalysis of PDEs (math.AP)
researchProduct

Correspondence between generalized binomial field states and coherent atomic states

2008

We show that the N-photon generalized binomial states of electromagnetic field may be put in a bijective mapping with the coherent atomic states of N two-level atoms. We exploit this correspondence to simply obtain both known and new properties of the N-photon generalized binomial states. In particular, an over-complete basis of these binomial states and an orthonormal basis are obtained. Finally, the squeezing properties of generalized binomial state are analyzed.

quantum statesBinomial (polynomial)Basis (linear algebra)Binomial approximationGeneral Physics and AstronomyState (functional analysis)Gaussian binomial coefficientsymbols.namesakeQuantum mechanicssymbolsCoherent statesMultinomial theoremGeneral Materials ScienceOrthonormal basisStatistical physicsPhysical and Theoretical ChemistryMathematicsThe European Physical Journal Special Topics
researchProduct

Locally convex quasi *-algebras: basic aspects and commutative case

2010

quasi *-algebrasSettore MAT/05 - Analisi Matematica
researchProduct

Jeu de Taquin and Diamond Cone for so(2n+1, C)

2020

International audience; The diamond cone is a combinatorial description for a basis of a natural indecomposable n-module, where n is the nilpotent factor of a complex semisimple Lie algebra g. After N. J. Wildberger who introduced this notion, this description was achieved for g = sl(n) , the rank 2 semisimple Lie algebras and g = sp (2n).In this work, we generalize these constructions to the Lie algebra g = so(2n + 1). The orthogonal semistandard Young tableaux were defined by M. Kashiwara and T. Nakashima, they index a basis for the shape algebra of so(2n + 1). Defining the notion of orthogonal quasistandard Young tableaux, we prove that these tableaux describe a basis for a quotient of t…

quasistandard Young tableauMathematics::Quantum AlgebraShape algebrajeu de taquinMSC: 20G05 05A15 17B10[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics::Representation Theorysemistandard Young tableau
researchProduct

Generalized wave propagation problems and discrete exterior calculus

2018

We introduce a general class of second-order boundary value problems unifying application areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single framework. This also enables us to solve wave propagation problems very efficiently with a single software system. The solution method precisely follows the conservation laws in finite-dimensional systems, whereas the constitutive relations are imposed approximately. We employ discrete exterior calculus for the spatial discretization, use natural crystal structures for three-dimensional meshing, and derive a “discrete Hodge” adapted to harmonic wave. The numerical experiments indicate that the cumulat…

raja-arvotHelmholtz equationDiscretizationWave propagationboundary value problemssähkömagnetismielectromagnetism010103 numerical & computational mathematics02 engineering and technologyalgebra01 natural sciencesdiscrete exterior calculusdifferentiaaligeometriaakustiikka0202 electrical engineering electronic engineering information engineeringApplied mathematicsBoundary value problemkvanttimekaniikkadifferential geometry0101 mathematicsacousticsMathematicsta113Numerical AnalysisConservation lawfinite differenceApplied MathematicsFinite difference020206 networking & telecommunicationsFinite element methodComputational MathematicsDiscrete exterior calculusModeling and SimulationelasticityAnalysisexterior algebra
researchProduct

On probabilistic interpretations of predicates

2016

In classical logic, any m-ary predicate is interpreted as an m-argument two-valued relation defined on a non-empty universe. In probability theory, m-ary predicates are interpreted as probability measures on the mth power of a probability space. m-ary probabilistic predicates are equivalently semantically characterized as m-dimensional cumulative distribution functions defined on Rm. The paper is mainly concerned with probabilistic interpretations of unary predicates in the algebra of cumulative distribution functions defined on R. This algebra, enriched with two constants, forms a bounded De Morgan algebra. Two logical systems based on the algebra of cumulative distributions are defined an…

random variableDe Morgan algebrapredicateconsequence operationcumulative distribution functionprobability space
researchProduct

INTERNAL CROSSED MODULES AND PEIFFER CONDITION

2010

In this paper we show that in a homological category in the sense of F. Borceux and D. Bourn, the notion of an internal precrossed module corresponding to a star-multiplicative graph, in the sense of G. Janelidze, can be obtained by directly internalizing the usual axioms of a crossed module, via equivariance. We then exhibit some sufficient conditions on a homological category under which this notion coincides with the notion of an internal crossed module due to G. Janelidze. We show that this is the case for any category of distributive Omega(2)-groups, in particular for the categories of groups with operations in the sense of G. Orzech.

reflexive graphSettore MAT/02 - Algebrainternal crossed modulesemiabelian categoryinternal action
researchProduct