Search results for "Algebraic Geometry"

showing 10 items of 356 documents

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

Singularities of germs and vanishing homology

2021

Esta tesis cubre dos artículos conjuntos con Nuño-Ballesteros (The Image Milnor Number and Excellent Unfoldings, en 2021, y On whitney equisingular unfoldings of corank 1 germs, como prepublicación), un artículo que sigue en desarrollo conjunto con Nuño-Ballesteros y Lê Dũng Tráng (provisionalmente titulado Relative polar curves and monodromy, como prepublicación) y un trabajo en desarrollo con Mond. Estos tres trabajos delimitan las tres partes principales del texto. Como se ha mencionado, el texto está dividido en tres partes. La primera de ellas trata el estudio de singularidades de gérmenes de aplicaciones holomorfas en el contexto de la teoría de Thom-Mather, i.e., módulo cambio de coo…

:MATEMÁTICAS [UNESCO]map germssingularitiesUNESCO::MATEMÁTICASalgebraic geometry
researchProduct

An Arakelov inequality in characteristic p and upper bound of p-rank zero locus

2008

In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.

Abelian varietyAlgebra and Number TheoryStable curveCombinatoricsAlgebraic cycleMathematics - Algebraic GeometryMathematics::Algebraic Geometry14D05 (Primary) 14G25 14H10 (Secondary)Algebraic surfaceFOS: MathematicsGenus fieldAlgebraic curveAbelian groupAlgebraic Geometry (math.AG)Singular point of an algebraic varietyMathematicsJournal of Number Theory
researchProduct

Smooth structures on algebraic surfaces with cyclic fundamental group

1988

Abelian varietyAlgebraIntersection theorymedicine.medical_specialtyFundamental groupFunction field of an algebraic varietyGeneral MathematicsAlgebraic surfacemedicineSmooth structureAlgebraic geometry and analytic geometryMathematicsInventiones Mathematicae
researchProduct

Automorphisms of hyperelliptic GAG-codes

2009

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

Abelian varietyDiscrete mathematicsautomorphismsGroup (mathematics)Applied Mathematicsgeneralized algebraic geometry codes.Outer automorphism groupReductive groupAutomorphismTheoretical Computer ScienceCombinatoricsMathematics::Group Theorygeometric Goppa codeAlgebraic groupDiscrete Mathematics and Combinatoricsalgebraic function fieldsSettore MAT/03 - GeometriaIsomorphismfinite fieldsGeometric Goppa codesfinite fieldalgebraic function fieldHyperelliptic curvegeneralized algebraic-geometry codesMathematicsDiscrete Mathematics
researchProduct

Non-archimedean hyperbolicity and applications

2018

Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field $K$ of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is $K$-analytically Brody hyperbolic in equal characteristic zero. These two results are predicted by the Green-Griffiths-Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use …

Abelian varietyPure mathematicsConjectureMathematics - Number TheoryApplied MathematicsGeneral Mathematics010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Field (mathematics)01 natural sciencesModuli spaceMathematics - Algebraic GeometryMorphism0103 physical sciencesUniformization theoremFOS: MathematicsNumber Theory (math.NT)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics0101 mathematicsAbelian groupAlgebraic Geometry (math.AG)Projective varietyMathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
researchProduct

Picard and the Italian Mathematicians: The History of Three Prix Bordin

2016

It is usually said that in the transition period between 19th and 20th centuries, French scholars (mainly Picard and Humbert) as well as Italian scholars (mainly Castelnuovo, Enriques and Severi) were interested in the study of algebraic surfaces, though using different methods.

Abelian varietyPure mathematicsHistoryAlgebraic surfaceAlgebraic functionAlgebraic geometryHumanitiesPeriod (music)
researchProduct

Bhabha Scattering and a special pencil of K3 surfaces

2018

We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Ap\'ery--Fermi pencil, that was related to Ap\'ery's proof of the irrationality of $\zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.

Algebra and Number Theory14C22 14J28 34L25 14J81010308 nuclear & particles physicsPhysics::Medical PhysicsGeneral Physics and Astronomy01 natural sciencesApéry's constantLattice (module)Theoretical physicsMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: Mathematics010306 general physicsAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMathematical PhysicsPencil (mathematics)Bhabha scatteringMathematics
researchProduct

Rank two aCM bundles on the del Pezzo fourfold of degree 6 and its general hyperplane section

2018

International audience; In the present paper we completely classify locally free sheaves of rank 2 with vanishing intermediate cohomology modules on the image of the Segre embedding $\mathbb{P}^2$ x $\mathbb{P}^2 \subseteq \mathbb{P}^8$ and its general hyperplane sections.Such a classification extends similar already known results regarding del Pezzo varieties with Picard numbers 1 and 3 and dimension at least 3.

Algebra and Number TheoryDegree (graph theory)Image (category theory)010102 general mathematicsDimension (graph theory)MSC: Primary 14J60 ; secondary 14J45Hyperplane sectionRank (differential topology)01 natural sciencesCohomologySegre embedding[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsAlgebraMathematics::Algebraic GeometryHyperplane0103 physical sciences010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsMathematics
researchProduct

Complex multiplication, Griffiths-Yukawa couplings, and rigidity for families of hypersurfaces

2003

Let M(d,n) be the moduli stack of hypersurfaces of degree d > n in the complex projective n-space, and let M(d,n;1) be the sub-stack, parameterizing hypersurfaces obtained as a d fold cyclic covering of the projective n-1 space, ramified over a hypersurface of degree d. Iterating this construction, one obtains M(d,n;r). We show that M(d,n;1) is rigid in M(d,n), although the Griffiths-Yukawa coupling degenerates for d<2n. On the other hand, for all d>n the sub-stack M(d,n;2) deforms. We calculate the exact length of the Griffiths-Yukawa coupling over M(d,n;r), and we construct a 4-dimensional family of quintic hypersurfaces, and a dense set of points in the base, where the fibres ha…

Algebra and Number TheoryDegree (graph theory)Mathematics - Complex Variables14D0514J3214D07Complex multiplicationYukawa potentialRigidity (psychology)14J70ModuliCombinatoricsAlgebraMathematics - Algebraic Geometry14J70; 14D05; 14D07; 14J32HypersurfaceMathematics::Algebraic GeometryMathematikFOS: MathematicsGeometry and TopologyComplex Variables (math.CV)Algebraic Geometry (math.AG)Stack (mathematics)Mathematics
researchProduct