Search results for "Algebraic number"

showing 10 items of 169 documents

Algebraic and logical characterizations of deterministic linear time classes

1997

In this paper an algebraic characterization of the class DLIN of functions that can be computed in linear time by a deterministic RAM using only numbers of linear size is given. This class was introduced by Grandjean, who showed that it is robust and contains most computational problems that are usually considered to be solvable in deterministic linear time.

AlgebraClass (set theory)Turing machinesymbols.namesakeGlobal functionsymbolsComputational problemBinary stringsAlgebraic numberCharacterization (mathematics)Time complexityMathematics
researchProduct

Algebra Without Context Is Empty, Visualizations Without Concepts Are Blind

2018

In the acquisition and formalization of mathematical concepts, the transition between algebraic and geometric representations and the use of different modes of representation contextualizes abstract algebra. Regrettably, the role of geometry is often limited to the visualization of algebraic facts and figurative memory aids. Such visualizations are blind for the underlying concepts, since transitions between concepts in different representations assume the existence of symbols, language, rules and operations in both systems. The history of mathematics offers contexts to develop geometrical language and intuition in areas currently being taught in school in a purely algebraic fashion. The ex…

AlgebraComputer scienceHistory of mathematicsGreek mathematicsContext (language use)Algebraic numberRepresentation (mathematics)Literal and figurative languageEngineering mathematicsAbstract algebra
researchProduct

The History of Algebra in Mathematics Education

2006

In this chapter, we analyse key issues in algebra history from which some lessons can be extracted for the future of the teaching and learning of algebra. A comparative analysis of two types of pre-Vietan languages (before 16th century), and of the corresponding methods to solve problems, leads to conjecture the presence of didactic obstacles of an epistemological origin in the transition from arithmetic to algebraic thinking. This illustrates the value of historic and critical analysis for basic research design in mathematics education. Analysing the interrelationship between different evolution stages of the sign system of symbolic algebra and vernacular language supports the inference th…

AlgebraConjectureMathematics educationPre-algebraBasis (universal algebra)Algebraic numberSymbolic computationValue (semiotics)Sign systemNatural languageMathematics
researchProduct

On the group of the automorphisms of some algebraic systems

1968

Within a framework of general algebra we firstly formulate a proposition on the group of the automorphisms of some irreducible algebrae (id est algebrae without proper non trivial subalgebrae). This proposition includes as particular cases the uniqueness of the automorphisms of the rational field and the Burnside theorem on the commutant of an irreducible set of operators of a finite dimensional vector space over an algebraically closed field. Afterwards we apply the general proposition to modules with irreducible sets of semilinear operators and we obtain a theorem which generalises from several points of view the Burnside theorem. Finally we derive as an application a proposition which sp…

AlgebraGeneral MathematicsUniversal algebraAlgebraic geometryAlgebraic numberAlgebraically closed fieldQuaternionAutomorphismBurnside theoremMathematicsVector spaceANNALI DELL UNIVERSITA DI FERRARA
researchProduct

Applied Linear Algebra: Electrical Networks

2016

This chapter shows how mathematical theory is not an abstract subject which has no connection with the real world. On the contrary, this entire book is written by stating that mathematics in general, and algebra in this case, is an integrating part of every day real life and that the professional life of computational scientists and engineers requires a solid mathematical background. In order to show how the contents of the previous chapters have an immediate technical application, the last chapter of this book describes a core engineering subject, i.e. electrical networks, as an algebraic exercise. Furthermore, this chapter shows how the combination of the algebraic topics give a natural r…

AlgebraMathematical theorySet (abstract data type)lawElectrical networkCore (graph theory)Linear algebraConnection (algebraic framework)Algebraic numberRepresentation (mathematics)Mathematicslaw.invention
researchProduct

On Meet-Complements in Cohn Geometries

1993

Within the frame of projective lattice geometry, the present paper investigates classes of meet-complements in Cohn geometries and especially in Ore and Bezout geometries. The algebraic background of these geometries is given by torsion free modules over domains — in particular Ore and Bezout domains. 1

AlgebraMathematics (miscellaneous)Applied MathematicsMathematics::Rings and AlgebrasTorsion (algebra)Computer Science::Symbolic ComputationAlgebraic numberMathematicsResults in Mathematics
researchProduct

Birkhoff-Frink representations as functors

2010

In an earlier article we characterized, from the viewpoint of set theory, those closure operators for which the classical result of Birkhoff and Frink, stating the equivalence between algebraic closure spaces, subalgebra lattices and algebraic lattices, holds in a many-sorted setting. In the present article we investigate, from the standpoint of category theory, the form these equivalences take when the adequate morphisms of the several different species of structures implicated in them are also taken into account. Specifically, our main aim is to provide a functorial rendering of the Birkhoff-Frink representation theorems for both single-sorted algebras and many-sorted algebras, by definin…

AlgebraMorphismFunctorMathematics::Category TheoryGeneral MathematicsSubalgebraClosure (topology)Covariant transformationAlgebraic numberCategory theoryAlgebraic closureMathematicsMathematische Nachrichten
researchProduct

Algebraic Results on Quantum Automata

2004

We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a new QFA model whose definition is motivated by implementations of quantum computers using nucleo-magnetic resonance (NMR). In particular, we are interested in the new model since nucleo-magnetic resonance was used to construct the most powerful physical quantum machine to date. We give a complete characterization of the languages recognized by the new model and by Boolean combinations of the Brodsky-Pippenger model. Our results show a striking similarity in the class of languages recognized by th…

AlgebraSurface (mathematics)Class (set theory)Pure mathematicsAlgebraic theoryQuantum machineQuantum finite automataAlgebraic numberComputer Science::Formal Languages and Automata TheoryQuantum computerMathematicsAutomaton
researchProduct

Hartmanis-Stearns Conjecture on Real Time and Transcendence

2012

Hartmanis-Stearns conjecture asserts that any number whose decimal expansion can be computed by a multitape Turing machine is either rational or transcendental. After half a century of active research by computer scientists and mathematicians the problem is still open but much more interesting than in 1965.

AlgebraTuring machinesymbols.namesakeRational numberConjectureIrrational numbersymbolsMultitape Turing machineDecimal representationTranscendental numberAlgebraic numberMathematics
researchProduct

Skaitļu teorija: lekcijas, lasītas Latvijas Universitātes Matemātikas un dabas zinātņu fakultātē

1936

Lekcijas sakārtojis Fogels, Ernests ; rediģējis Lūsis, Arvīds.

Algebraic number theoryNumber theoryAritmētiskās funkcijas:MATHEMATICS::Applied mathematics::Numerical analysis [Research Subject Categories]Arithmetic functionsNumbers rationalMatemātikaKongruenti skaitļiAlgebriskā skaitļu teorijaSkaitļu teorijaSkaitļi racionālie
researchProduct