Search results for "Algebras"
showing 10 items of 281 documents
A note on strongly Lie nilpotency
1991
In this note the authors studies strongly Lie nilpotent rings and proves that if a ringR is strongly Lie nilpotent thenR(2), the ideal generated by all commutators, is nilpotent.
*-Representations, seminorms and structure properties of normed quasi*-algebras
2008
The class of -representations of a normed quasi -algebra (X;A0) is in- vestigated, mainly for its relationship with the structure of (X;A0). The starting point of this analysis is the construction of GNS-like -representations of a quasi -algebra (X;A0) dened by invariant positive sesquilinear forms. The family of bounded invariant positive sesquilinear forms denes some seminorms (in some cases, C -seminorms) that provide useful information on the structure of (X;A0) and on the continuity properties of its -representations. 1. Introduction. A quasi -algebra is a couple (X;A0), where X is a vector space with involution , A0 is a -algebra and a vector subspace of X, and X is an A0-bimodule who…
On nilpotent Moufang loops with central associators
2007
Abstract In this paper, we investigate Moufang p-loops of nilpotency class at least three for p > 3 . The smallest examples have order p 5 and satisfy the following properties: (1) They are of maximal nilpotency class, (2) their associators lie in the center, and (3) they can be constructed using a general form of the semidirect product of a cyclic group and a group of maximal class. We present some results concerning loops with these properties. As an application, we classify proper Moufang loops of order p 5 , p > 3 , and collect information on their multiplication groups.
On the Toeplitz algebras of right-angled and finite-type Artin groups
1999
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …
Representable linear functionals on partial *-algebras
2012
A GNS-like *-representation of a partial *-algebra \({{\mathfrak A}}\) defined by certain representable linear functionals on \({{\mathfrak A}}\) is constructed. The study of the interplay with the GNS construction associated with invariant positive sesquilinear forms (ips) leads to the notions of pre-core and of singular form. It is shown that a positive sesquilinear form with pre-core always decomposes into the sum of an ips form and a singular one.
Associative rings whose adjoint semigroup is locally nilpotent
2001
The set of all elements of an associative ring R, not necessarily with a unit element, forms a semigroup R ad under the circle operation \({r\circ s}={r+s+rs}\) on R. The ring R is called radical if R ad is a group. It is proved that the semigroup R ad is nilpotent of class n (in sense of A. Mal'cev or B. H. Neumann and T. Taylor) if and only if the ring R is Lie-nilpotent of class n. This yields a positive answer to a question posed by A. Krasil'nikov and independently considered by D. Riley and V. Tasic. It is also shown that the adjoint group of a radical ring R is locally nilpotent if and only if R is locally Lie-nilpotent.
Varieties of superalgebras of almost polynomial growth
2011
Abstract Let V gr be a variety of superalgebras and let c n gr ( V gr ) , n = 1 , 2 , … , be its sequence of graded codimensions. Such a sequence is polynomially bounded if and only if V gr does not contain a list of five superalgebras consisting of a commutative superalgebra, the infinite dimensional Grassmann algebra and the algebra of 2 × 2 upper triangular matrices with trivial and natural Z 2 -gradings. In this paper we completely classify all subvarieties of the varieties generated by these five superalgebras, by giving a complete list of finite dimensional generating superalgebras.
Polynomial identities on superalgebras and exponential growth
2003
Abstract Let A be a finitely generated superalgebra over a field F of characteristic 0. To the graded polynomial identities of A one associates a numerical sequence {cnsup(A)}n⩾1 called the sequence of graded codimensions of A. In case A satisfies an ordinary polynomial identity, such sequence is exponentially bounded and we capture its exponential growth by proving that for any such algebra lim n→∞ c n sup (A) n exists and is a non-negative integer; we denote such integer by supexp(A) and we give an effective way for computing it. As an application, we construct eight superalgebras Ai, i=1,…,8, characterizing the identities of any finitely generated superalgebra A with supexp(A)>2 in the f…
Relatively Orthocomplemented Skew Nearlattices in Rickart Rings
2015
AbstractA class of (right) Rickart rings, called strong, is isolated. In particular, every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R admits a binary operation which turns R into a right normal band having an upper bound property with respect to its natural order ≤; such bands are known as right normal skew nearlattices. The poset (R, ≤) is relatively orthocomplemented; in particular, every initial segment in it is orthomodular.The order ≤ is actually a version of the so called right-star order. The one-sided star orders are well-investigated for matrices and recently have been generalized to bounded linear Hilbert space operators and to abstract Ric…
Exact quantum algorithms have advantage for almost all Boolean functions
2014
It has been proved that almost all $n$-bit Boolean functions have exact classical query complexity $n$. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all $n$-bit Boolean functions can be computed by an exact quantum algorithm with less than $n$ queries. More exactly, we prove that ${AND}_n$ is the only $n$-bit Boolean function, up to isomorphism, that requires $n$ queries.