Search results for "Alix"
showing 5 items of 505 documents
CCDC 1524101: Experimental Crystal Structure Determination
2017
UCUZOK : 6,12,18,24-tetramethoxy-2,8,14,20-tetranonyl-4,10,16,22-tetrahydroxycalix[4]arene propan-2-ol solvate Space Group: P-1, Cell: a 12.27090(10)Å b 13.96500(10)Å c 19.53620(10)Å, α 83.2880(1)° β 89.0250(1)° γ 84.9650(1)° Work published 2017 via Cambridge Crystallographic Data Centre.
CCDC 264161: Experimental Crystal Structure Determination
2017
WEJVOZ : New structure undergoing enhancement. Space Group: P21/c, Cell: a 18.5217(4)Å b 23.2973(6)Å c 21.1118(3)Å, α 90.00° β 96.591(1)° γ 90.00°. Work published 2017 via Cambridge Crystallographic Data Centre.
CCDC 750239: Experimental Crystal Structure Determination
2014
UDUXOI : 2,26,51,54-Tetraethyl-6,24,30,48-tetramethoxy-9,12,15,18,21,33,36,39,42,45-decaoxaheptacyclo[27.19.3.35,25.03,8.022,53.027,32.046,50]tetrapentaconta-1(48),3,5,7,22,24,27,29,31,46,49,52-dodecaene methanol solvate. Work published 2014 via Cambridge Crystallographic Data Centre.
SMART NANOSPONGE-BASED SYSTEMS FOR ADVANCED APPLICATIONS
2023
Supramolecular Organocatalysis in Water Mediated by Macrocyclic Compounds
2018
In the last decades many efforts have been devoted to design supramolecular organocatalysts able to work in water as the reaction medium. The use of water as solvent provides promising benefits with respect to environmental impact. In this context, macrocyclic compounds played a role of primary importance thanks to their ease of synthesis and their molecular recognition abilities toward the reactants. The aim of this review is to give an overview of the recent advances in the field of supramolecular organocatalysis in water, focusing the attention on calixarene and cyclodextrins derivatives. Calixarenes and cyclodextrins, thanks to their hydrophobic cavities, are able to host selectively th…