Search results for "Alloy"
showing 10 items of 2153 documents
The Grain Boundary Wetting Phenomena in the Ti-Containing High-Entropy Alloys: A Review
2021
In this review, the phenomenon of grain boundary (GB) wetting by melt is analyzed for multicomponent alloys without principal components (also called high-entropy alloys or HEAs) containing titanium. GB wetting can be complete or partial. In the former case, the liquid phase forms the continuous layers between solid grains and completely separates them. In the latter case of partial GB wetting, the melt forms the chain of droplets in GBs, with certain non-zero contact angles. The GB wetting phenomenon can be observed in HEAs produced by all solidification-based technologies. GB leads to the appearance of novel GB tie lines Twmin and Twmax in the multicomponent HEA phase diagrams. The so-cal…
Two-phase dielectric polar structures in 0.1NBT-0.6ST-0.3PT solid solutions
2018
Abstract In this work we address the peculiarities of the macroscopic responses in ternary 0.1Na0·5Bi0·5TiO3-0.6SrTiO3-0.3PbTiO3 (0.1NBT-0.6ST-0.3PT) solid solutions. These solid solutions exhibit a spontaneous first order relaxor to normal ferroelectric phase transition. The phase transition is accompanied by a broad dielectric relaxation which expands over 10 orders of magnitude in frequency just above the phase transition temperature. The temperature dependence of polarization shows that non-zero net polarization persists above the phase transition temperature. Below the phase transition temperature, it is not possible to describe the temperature dependence of polarization with a power l…
Study of the thermochromic phase transition in CuMo1−xWxO4 solid solutions at the W L3-edge by resonant X-ray emission spectroscopy
2021
Abstract Polycrystalline CuMo 1 − x W x O 4 solid solutions were studied by resonant X-ray emission spectroscopy (RXES) at the W L 3 -edge to follow a variation of the tungsten local atomic and electronic structures across thermochromic phase transition as a function of sample composition and temperature. The experimental results were interpreted using ab initio calculations. The crystal-field splitting parameter Δ for the 5d(W)-states was obtained from the analysis of the RXES plane and was used to evaluate the coordination of tungsten atoms. Temperature-dependent RXES measurements were successfully employed to determine the hysteretic behaviour of the structural phase transition between t…
Unusual domain-wall motion in ferromagnetic semiconductor films with tetragonal anisotropy
2009
International audience; Magnetic field-driven domain-wall propagation in the flow regime is investigated in (Ga, Mn) As ferromagnetic semiconductor layers. Square-shape magnetic domains with an unexpected orientation of their edges, at pi/8 with respect to the anisotropy axes, are found. This is shown to arise from the effect of tetragonal magnetic anisotropy on domain-wall dynamics. Using a one-dimensional model for domain-wall motion and modeling domain growth by contour dynamics the shape and orientation of domains and their field range for existence are well reproduced. These results point to the key role of the vectorial nature of the order parameter in the dynamics of ferromagnetic do…
The role of disorder on Er3+ luminescence in Na1/2Bi1/2TiO3
2018
Abstract Photoluminescence in Er-doped NBT is studied at different temperatures. Remarkable reduction of the luminescence intensity in the green spectral range is found in the poled state comparing with the depoled state. Luminescence spectra at low temperatures reveal continuous wavelength shift of some maxima belonging to the 4 S 3/2 → 4 I 15/2 transition depending on the excitation wavelength, which is explained by large variety of different environments around Er 3+ related to the random distribution of Na + and Bi 3+ in A-sublattice of the ABO 3 perovskite structure. Poling extends the wavelength range where shift of luminescence maxima is observed in the direction of longer excitati…
Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)
2018
Abstract The monitoring of heat flux is becoming more and more critical for many materials and structures approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale and requires calibration. Here we report on a micro-hotplate device made of a platinum heater suspended on thin silicon nitride (SiN) membranes integrating specific features for SThM calibration. These heated reference samples can include a localized resistive temperature sensors (RTD) or standalone platinum membranes (typically 10 × 10 μm2) on which the temperature can be measured precisely. This functional area is dedicated to (1) estimate the th…
Interface evolution during magnetic pulse welding under extremely high strain rate collision: mechanisms, thermomechanical kinetics and consequences
2020
Abstract Magnetic pulse welding enables to produce perplexing interfacial morphologies due to the complex material response during the high strain rate collision. Thus, a thermomechanical model is used in this study to investigate the formation mechanism of the wake, vortex, swirling and mesoscale cavities with the increase of the impact intensity at the interface. The formation of these interfacial features are difficult to characterize by insitu methods, thus the origin of phenomena still remain a subject of open discussion. Our studies identify the governing mechanisms and the associated thermomechanical kinetics, which are responsible for the formation mechanism of interfacial features.…
Normal and relaxor ferroelectric behavior in the Ba1−xPbx(Ti1−yZry)O3 solid solutions
2017
Abstract Polycrystalline samples of Ba 1−x Pb x (Ti 1−y Zr y )O 3 (BPTZ) with x = 0.025 & 0.1 and 0.10 ≤ y ≤ 0.50 have been synthesized by high-temperature solid-state reaction technique. X-ray diffraction reveals the formation of single phase with tetragonal or cubic structure. Dielectric investigations were carried out in the temperature range from 80 to 445 K with frequencies range from 10 2 to 10 6 Hz. A broad dielectric anomaly coupled with the shift of dielectric maxima toward a higher temperature with increasing frequency indicates either a diffuse phase transition or relaxor behavior in some of these ceramics. Whatever lead content, when zirconium is substituted by titanium, T C an…
A solvent-directed stereoselective and electrocatalytic synthesis of diisoeugenol.
2018
A stereoselective and electrocatalytic coupling reaction of isoeugenol has been reported for the first time in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/boron-doped diamond (BDD) electrode system. This particular C-C bond formation and diastereoselectivity is driven by a solvate interaction between the radical species and another isoeugenol molecule. Due to an electrocatalytic cycle, only understoichiometric amounts of charge are necessary. Since electric current is directly employed as the oxidant, the reaction is metal and reagent-free. In addition, the electrolysis can be conducted in a very simple undivided beaker-type cell under constant current conditions. Therefore, the protocol is …
Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials
2017
[EN] A novel mesoporous silica material containing boron-dipyrromethene (BODIPY) moieties (I) is employed for the detection of nerve agent simulants (NASs) and the organophosphate nerve or chemical warfare agents (CWAs) Sarin (GB), Soman (GD), and Tabun (GA) in aqueous environments. The reactive BODIPY dye with an optimum positioned hydroxyl group undergoes acylation reactions with phosph(on)ate substrates, yielding a bicyclic ring. Due to aggregation of the dyes in water, the sensitivity of the free dye in solution is very low. Only after immobilization of the BODIPY moieties into the silica substrates is aggregation inhibited and a sensitive determination of the NASs diethyl cyanophosphon…