Search results for "Amyloid beta-Peptide"
showing 10 items of 131 documents
Negative staining across holes: application to fibril and tubular structures.
2007
The negative staining technique, when used with holey carbon support films, presents superior imaging conditions than is the case when samples are adsorbed to continuous carbon films. A demonstration of this negative staining approach is presented, using ammonium molybdate in combination with trehalose, applied to several fibrillar and tubular samples. Fibrils formed from the amyloid-beta peptide and the protease inhibitor pepstain A spread very well unsupported across holes and the different polymorphic fibril forms can be readily assessed. However, tubular forms of amyloid-beta have a tendency to be flattened, due to surface tension forces prior to and during specimen drying. Sub-fibril a…
Structural analysis of copper(I) interaction with amyloid β peptide
2019
Abstract The N-terminal fragment of Aβ (β = beta) peptide is able to bind essential transition metal ions like, copper, zinc and iron. Metal binding usually occurs via the imidazole nitrogens of the three His residues which play a key role in the coordination chemistry. Among all the investigated systems, the interaction between copper and Amyloid β assume a biological relevance because of the interplay between the two copper oxidation states, Cu(II) and Cu(I), and their involvement in redox reactions. Both copper ions share the ability to bind Amyloid β. A huge number of investigations have demonstrated that Cu(II) anchors to the N-terminal amino and His6, His13/14 imidazole groups, while …
Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer's disease.
2011
Amyloid-β peptide (Aβ) toxicity and tau hyperphosphorylation are hallmarks of Alzheimer’s disease (AD). How their molecular relationships may affect the etiology, progression, and severity of the disease, however, has not been elucidated. We now report that incubation of foetal rat cortical neurons with Aβ up-regulates expression of the Regulator of Calcineurin gene RCAN1, and this is mediated by Aβ-induced oxidative stress. Calcineurin (PPP3CA) is a serine-threonine phosphatase that dephosphorylates tau. RCAN1 proteins inhibit this phosphatase activity of calcineurin. Increased expression of RCAN1 also causes up-regulation of glycogen synthase kinase-3beta (GSK3β), a tau kinase. Thus, incr…
Functional Role of Lipoprotein Receptors in Alzheimers Disease
2008
The LDL receptor gene family constitutes a class of structurally closely related cell surface receptors fulfilling diverse functions in different organs, tissues, and cell types. The LDL receptor is the prototype of this family, which also includes the VLDLR, ApoER2/LRP8, LRP1 and LRP1B, as well as Megalin/GP330, SorLA/LR11, LRP5, LRP6 and MEGF7. Recently several lines of evidence have positioned the LDL receptor gene family as one of the key players in Alzheimer's disease (AD) research. Initially this receptor family was of high interest due to its key function in cholesterol/apolipoprotein E (ApoE) uptake, with the epsilon4 allele of ApoE as the strongest genetic risk factor for late-onse…
Haptoglobin interacts with apolipoprotein E and beta-amyloid and influences their crosstalk.
2014
Beta-amyloid accumulation in brain is a driving force for Alzheimer's disease pathogenesis. Apolipoprotein E (ApoE) represents a critical player in beta-amyloid homeostasis, but its role in disease progression is controversial. We previously reported that the acute-phase protein haptoglobin binds ApoE and impairs its function in cholesterol homeostasis. The major aims of this study were to characterize the binding of haptoglobin to beta-amyloid, and to evaluate whether haptoglobin affects ApoE binding to beta-amyloid. Haptoglobin is here reported to form a complex with beta-amyloid as shown by immunoblotting experiments with purified proteins, or by its immunoprecipitation in brain tissues …
Apolipoprotein E polymorphism influences not only cerebral senile plaque load but also Alzheimer-type neurofibrillary tangle formation.
1995
Only recently, evidence was provided that apolipoprotein E allele epsilon 4 located on Chromosome 19 is associated with late onset (i.e. senile) sporadic Alzheimer's disease. Histologically, Alzheimer's disease is associated with intraneuronal neurofibrillary changes and extraneuronal A4/beta-amyloid deposition. We set out with a histological staging system which considers the gradual development of Alzheimer's disease-related histological changes over time and correlates highly with the cognitive decline ante mortem. Our analysis revealed that both the mean stage for A4/beta-amyloid deposits and the mean stage for neurofibrillary tangles get significantly shifted upwards in epsilon 4-carri…
Inflammation, genes and zinc in Alzheimer's disease.
2007
Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease which in Western society mainly accounts for clinical dementia. AD has been linked to inflammation and metal biological pathway. Neuro-pathological hallmarks are senile plaques, resulting from the accumulation of several proteins and an inflammatory reaction around deposits of amyloid, a fibrillar protein, Abeta, product of cleavage of a much larger protein, the beta-amyloid precursor protein (APP) and neurofibrillary tangles. Amyloid deposition, due to the accumulation of Abeta peptide, is the main pathogenetic mechanism. Inflammation clearly occurs in pathologically vulnerable regions of AD and several i…
Inflammatory Chemokines Expression Variations and Their Receptors in APP/PS1 Mice
2021
Background: In Alzheimer’s disease (AD), an increase in inflammation is distinctive. Amyloid precursor protein plus presenilin-1 (APP/PS1 mice) is a model for this illness. Chemokines secreted by central nervous system (CNS) cells could play multiple important roles in AD. Data looking for the chemokines involved in inflammatory mechanisms are lacking. To understand the changes that occur in the inflammation process in AD, it is necessary to improve strategies to act on specific inflammatory targets. Objective: Chemokines and their receptors involved in phagocytosis, demyelination, chemotaxis, and coagulation were the objective of our study. Methods: Female APPswe/PS1 double-transgenic mice…
Rebalancing β-Amyloid-Induced Decrease of ATP Level by Amorphous Nano/Micro Polyphosphate: Suppression of the Neurotoxic Effect of Amyloid β-Protein …
2017
Morbus Alzheimer neuropathology is characterized by an impaired energy homeostasis of brain tissue. We present an approach towards a potential therapy of Alzheimer disease based on the high-energy polymer inorganic polyphosphate (polyP), which physiologically occurs both in the extracellular and in the intracellular space. Rat pheochromocytoma (PC) 12 cells, as well as rat primary cortical neurons were exposed to the Alzheimer peptide Aβ25-35. They were incubated in vitro with polyphosphate (polyP); ortho-phosphate was used as a control. The polymer remained as Na+ salt; or complexed in a stoichiometric ratio to Ca2+ (Na-polyP[Ca2+]); or was processed as amorphous Ca-polyP microparticles (C…
WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture
2015
Alzheimer's disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in…