Search results for "Analisi Matematica"

showing 10 items of 811 documents

Henstock–Kurzweil–Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space

2013

Abstract The aim of this paper is to describe Henstock–Kurzweil–Pettis (HKP) integrable compact valued multifunctions. Such characterizations are known in case of functions (see Di Piazza and Musial (2006)  [16] ). It is also known (see Di Piazza and Musial (2010)  [19] ) that each HKP-integrable compact valued multifunction can be represented as a sum of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that decomposition, we present a pure topological characterization of integrability. Having applied the above results, we obtain two convergence theorems, that generalize results known for HKP-integrable functions. We emphasize also the special role played in …

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)Henstock integralIntegrable systemApplied MathematicsBanach spaceconvergence theoremsFunction (mathematics)Characterization (mathematics)set-valued Henstock-Kurzweil-Pettis integralset-valued Pettis integralsupport functionMultifunctionSettore MAT/05 - Analisi MatematicaConvergence (routing)AnalysisselectorMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Fixed point results for nonexpansive mappings on metric spaces

2015

In this paper we obtain some fixed point results for a class of nonexpansive single-valued mappings and a class of nonexpansive multi-valued mappings in the setting of a metric space. The contraction mappings in Banach sense belong to the class of nonexpansive single-valued mappings considered herein. These results are generalizations of the analogous ones in Khojasteh et al. [Abstr. Appl. Anal. 2014 (2014), Article ID 325840].

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsGeneral MathematicsFixed pointFixed pointMetric space Multi-valued mapping Picard sequenceMetric spaceSettore MAT/05 - Analisi MatematicaMetric mapSettore MAT/03 - GeometriaCoincidence pointContraction (operator theory)Mathematics
researchProduct

Closedness and lower semicontinuity of positive sesquilinear forms

2009

The relationship between the notion of closedness, lower semicontinuity and completeness (of a quotient) of the domain of a positive sesquilinear form defined on a subspace of a topological vector space is investigated and sufficient conditions for their equivalence are given.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsMathematics::Operator AlgebrasSesquilinear formGeneral MathematicsMathematics::Optimization and ControlMathematics::General TopologyClosedness Semicontinuity Sesquilinear formsDomain (mathematical analysis)Topological vector spaceSettore MAT/05 - Analisi MatematicaAlgebra over a fieldCompleteness (statistics)Equivalence (measure theory)Subspace topologyQuotientMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Fixed point results on metric and partial metric spaces via simulation functions

2015

We prove existence and uniqueness of fixed point, by using a simulation function and a lower semi-continuous function in the setting of metric space. As consequences of this study, we deduce several related fixed point results, in metric and partial metric spaces. An example is given to support the new theory.

Discrete mathematicsMetric spaceNonlinear contractionAlgebra and Number TheoryPartial metric spaceSimulation functionSettore MAT/05 - Analisi MatematicaMetric (mathematics)Fixed pointFixed pointMetric spaceAnalysisMathematics
researchProduct

On fixed points for a–n–f-contractive multi-valued mappings in partial metric spaces

2015

Recently, Samet et al. introduced the notion of α-ψ-contractive type mappings and established some fixed point theorems in complete metric spaces. Successively, Asl et al. introduced the notion of αӿ-ψ-contractive multi-valued mappings and gave a fixed point result for these multivalued mappings. In this paper, we establish results of fixed point for αӿ-admissible mixed multivalued mappings with respect to a function η and common fixed point for a pair (S; T) of mixed multi-valued mappings, that is, αӿ-admissible with respect to a function η in partial metric spaces. An example is given to illustrate our result.

Discrete mathematicsMetric spacePartial metric spaceSettore MAT/05 - Analisi MatematicaApplied Mathematicsαӿ-admissible pair with respect to a function ηFixed pointFixed pointα-η-ψ-contractive conditionCommon fixed pointMulti valuedAnalysisMathematicsNonlinear Analysis: Modelling and Control
researchProduct

Common fixed point theorems for multi-valued maps

2012

Abstract We establish some results on coincidence and common fixed points for a two-pair of multi-valued and single-valued maps in complete metric spaces. Presented theorems generalize recent results of Gordji et al [4] and several results existing in the literature.

Discrete mathematicsMetric spaceSettore MAT/05 - Analisi MatematicaGeneral MathematicsCommon fixed pointGeneral Physics and AstronomyCoincidence point common fixed point multi-valued mapsFixed pointCoincidence pointMulti valuedCoincidenceMathematics
researchProduct

Meir-Keeler Type Contractions for Tripled Fixed Points

2012

Abstract In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.

Discrete mathematicsMetric spaceSettore MAT/05 - Analisi MatematicaGeneralizationGeneral MathematicsMathematics::General TopologyGeneral Physics and AstronomyFixed-point theoremTripled fixed point theorems Meir-Keeler type contractions partially ordered sets.Type (model theory)Fixed pointPartially ordered setMathematicsActa Mathematica Scientia
researchProduct

Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces

2012

Abstract In this paper, we introduce the concept of a partial Hausdorff metric. We initiate study of fixed point theory for multi-valued mappings on partial metric space using the partial Hausdorff metric and prove an analogous to the well-known Nadlerʼs fixed point theorem. Moreover, we give a homotopy result as application of our main result.

Discrete mathematicsNadlerʼs fixed point theoremPure mathematicsInjective metric spacePartial Hausdorff metricMulti-valued mappingsNadler’s fixed point theoremMulti-valued mappingConvex metric spaceIntrinsic metricMetric spaceHausdorff distanceSettore MAT/05 - Analisi MatematicaHausdorff dimensionHausdorff measureGeometry and TopologyMetric differentialMathematics
researchProduct

Semi-compatible and reciprocally continuous maps in weak non-Archimedean Menger PM-spaces

2012

In this paper, we introduce semi-compatible maps and reciprocally continuous maps in weak non-Archimedean PM-spaces and establish a common fixed point theorem for such maps. Moreover, we show that, in the context of reciprocal continuity, the notions of compatibility and semi-compatibility of maps become equivalent. Our result generalizes several fixed point theorems in the sense that all maps involved in the theorem can be discontinuous even at the common fixed point.

Discrete mathematicsNon-Archimedean Menger Space Compatible Semi compatible Weakly compatible Reciprocally continuousWeakly compatibleSettore MAT/05 - Analisi MatematicaGeneral MathematicsCompatibility (mechanics)Common fixed pointFixed-point theoremCommon fixed point theoremReciprocalMathematics
researchProduct

Some Classes of Operators on Partial Inner Product Spaces

2012

Many families of function spaces, such as $L^{p}$ spaces, Besov spaces, amalgam spaces or modulation spaces, exhibit the common feature of being indexed by one parameter (or more) which measures the behavior (regularity, decay properties) of particular functions. All these families of spaces are, or contain, scales or lattices of Banach spaces and constitute special cases of the so-called \emph{partial inner product spaces (\pip s)} that play a central role in analysis, in mathematical physics and in signal processing (e.g. wavelet or Gabor analysis). The basic idea for this structure is that such families should be taken as a whole and operators, bases, frames on them should be defined glo…

Discrete mathematicsNuclear operatorTopological tensor productHilbert spaceoperatorsOperator theoryCompact operator on Hilbert spacesymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsInterpolation spacePip-spaceBirnbaum–Orlicz spaceLp spaceMathematics
researchProduct