Search results for "Analisi Matematica"

showing 10 items of 811 documents

The equality case in a Poincaré–Wirtinger type inequality

2016

It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.

Hermite operatorsymbols.namesakePure mathematicsNeumann eigenvaluesSettore MAT/05 - Analisi MatematicaHermite operator Neumann eigenvalues thin stripsGeneral MathematicsPoincaré conjecturesymbolsType inequalityThin stripsMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct

Serrin-Type Overdetermined Problems: an Alternative Proof

2008

We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.

Hessian equationMechanical EngineeringMathematical analysisMathematics::Analysis of PDEsHessian equationType (model theory)isoperimetric inequalityMathematical proofOverdetermined systemNonlinear systemMathematics (miscellaneous)Maximum principleSettore MAT/05 - Analisi Matematicasymmetry of solutionsOverdetermined problemApplied mathematicsIsoperimetric inequalityPoisson's equationAnalysisMathematicsArchive for Rational Mechanics and Analysis
researchProduct

Hessian equations and symmetrization

2005

In this paper we state same comparisons results for solutions to Hessian type equations in dimension n> 2. These results involve convenient rearrangements of solutions that preserve suitable cross-sectional measures of their level sets.

Hessian equations symmetrizationSettore MAT/05 - Analisi Matematica
researchProduct

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

On the Symmetry of Solutions to a k-Hessian Type Equation

2013

Abstract In this note we prove that if u is a negative solution to a nonlinear elliptic equation involving a Hessian operator, and u is zero on the boundary of a ball, then u is radially symmetric and increasing along the radii.

Hessian matrixGeneral Mathematics010102 general mathematicsCharacteristic equationStatistical and Nonlinear Physics01 natural sciencesSymmetry (physics)010101 applied mathematicsExplicit symmetry breakingType equationsymbols.namesakeSymmetrySettore MAT/05 - Analisi Matematicasymbols0101 mathematicsHessian equationsMathematical physicsMathematics
researchProduct

Comparison results for Hessian equations via symmetrization

2007

where the λ’s are the eigenvalues of the Hessian matrix D2u of u and Sk is the kth elementary symmetric function. For example, for k = 1, S1(Du) = 1u, while, for k = n, Sn(D 2u) = detD2u. Equations involving these operators, and some more general equations of the form F(λ1, . . . , λn) = f in , (1.2) have been widely studied by many authors, who restrict their considerations to convenient cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25] we define the cone 0k of ellipticity for (1.1) to be the connected component containing the positive cone 0 = {λ ∈ R : λi > 0 ∀i = 1, . . . , n} of the set where Sk is positive. Thus 0k is an open, convex, symmetric…

Hessian matrixHessian equationsymmetrizationHessian operatorApplied MathematicsGeneral Mathematicscomparison resultHessian equationCombinatoricssymbols.namesakeOperator (computer programming)Cone (topology)Settore MAT/05 - Analisi MatematicaVertex (curve)symbolsSymmetrizationElementary symmetric polynomialMoser type inequalitiesAlgorithmEigenvalues and eigenvectorsMathematics
researchProduct

Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential

2020

Abstract We consider a two phase eigenvalue problem driven by the ( p , q ) -Laplacian plus an indefinite and unbounded potential, and Robin boundary condition. Using a modification of the Nehari manifold method, we show that there exists a nontrivial open interval I ⊆ R such that every λ ∈ I is an eigenvalue with positive eigenfunctions. When we impose additional regularity conditions on the potential function and the boundary coefficient, we show that we have smooth eigenfunctions.

Indefinite unbounded potentialPure mathematicsNehari manifoldApplied Mathematics010102 general mathematicsContinuous spectrumBoundary (topology)Function (mathematics)Robin boundary conditionMathematics::Spectral TheoryEigenfunction01 natural sciences(pq)-LaplacianRobin boundary condition010101 applied mathematicsSettore MAT/05 - Analisi MatematicaLagrange multiplier rule0101 mathematicsSobolev embedding theoremNehari manifoldLaplace operatorAnalysisEigenvalues and eigenvectorsMathematicsJournal of Differential Equations
researchProduct

Mapping properties of weakly singular periodic volume potentials in Roumieu classes

2020

The analysis of the dependence of integral operators on perturbations plays an important role in the study of inverse problems and of perturbed boundary value problems. In this paper, we focus on the mapping properties of the volume potentials with weakly singular periodic kernels. Our main result is to prove that the map which takes a density function and a periodic kernel to a (suitable restriction of the) volume potential is bilinear and continuous with values in a Roumieu class of analytic functions. This result extends to the periodic case of some previous results obtained by the authors for nonperiodic potentials, and it is motivated by the study of perturbation problems for the solut…

Integral operatorsNumerical AnalysisIntegral operators; Periodic kernels; Periodic volume potentials; Roumieu classes; Special nonlinear operatorsDifferential equationApplied Mathematics010102 general mathematicsMathematical analysisSpecial nonlinear operatorsBilinear interpolationPerturbation (astronomy)Probability density functionInverse problem01 natural sciences31B10010101 applied mathematicsSettore MAT/05 - Analisi MatematicaKernel (statistics)Boundary value problemPeriodic volume potentials0101 mathematics47H30Roumieu classesPeriodic kernelsAnalytic functionMathematics
researchProduct

MR3200323 Norling, Magnus Dahler, Inverse semigroup C∗-algebras associated with left cancellative semigroups. Proc. Edinb. Math. Soc. (2) 57 (2014), …

2014

Inverse semigroupSettore MAT/05 - Analisi Matematica
researchProduct

MR2865796 Riecan, Beloslav; Tkacik, Štefan A note on the Kluvánek integral. Tatra Mt. Math. Publ. 49 (2011), 59--65

2011

Kluvanek integralSettore MAT/05 - Analisi Matematica
researchProduct