Search results for "Analisi Matematica"
showing 10 items of 811 documents
The equality case in a Poincaré–Wirtinger type inequality
2016
It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.
Serrin-Type Overdetermined Problems: an Alternative Proof
2008
We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.
Hessian equations and symmetrization
2005
In this paper we state same comparisons results for solutions to Hessian type equations in dimension n> 2. These results involve convenient rearrangements of solutions that preserve suitable cross-sectional measures of their level sets.
Stability of radial symmetry for a Monge-Ampère overdetermined problem
2008
Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
On the Symmetry of Solutions to a k-Hessian Type Equation
2013
Abstract In this note we prove that if u is a negative solution to a nonlinear elliptic equation involving a Hessian operator, and u is zero on the boundary of a ball, then u is radially symmetric and increasing along the radii.
Comparison results for Hessian equations via symmetrization
2007
where the λ’s are the eigenvalues of the Hessian matrix D2u of u and Sk is the kth elementary symmetric function. For example, for k = 1, S1(Du) = 1u, while, for k = n, Sn(D 2u) = detD2u. Equations involving these operators, and some more general equations of the form F(λ1, . . . , λn) = f in , (1.2) have been widely studied by many authors, who restrict their considerations to convenient cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25] we define the cone 0k of ellipticity for (1.1) to be the connected component containing the positive cone 0 = {λ ∈ R : λi > 0 ∀i = 1, . . . , n} of the set where Sk is positive. Thus 0k is an open, convex, symmetric…
Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential
2020
Abstract We consider a two phase eigenvalue problem driven by the ( p , q ) -Laplacian plus an indefinite and unbounded potential, and Robin boundary condition. Using a modification of the Nehari manifold method, we show that there exists a nontrivial open interval I ⊆ R such that every λ ∈ I is an eigenvalue with positive eigenfunctions. When we impose additional regularity conditions on the potential function and the boundary coefficient, we show that we have smooth eigenfunctions.
Mapping properties of weakly singular periodic volume potentials in Roumieu classes
2020
The analysis of the dependence of integral operators on perturbations plays an important role in the study of inverse problems and of perturbed boundary value problems. In this paper, we focus on the mapping properties of the volume potentials with weakly singular periodic kernels. Our main result is to prove that the map which takes a density function and a periodic kernel to a (suitable restriction of the) volume potential is bilinear and continuous with values in a Roumieu class of analytic functions. This result extends to the periodic case of some previous results obtained by the authors for nonperiodic potentials, and it is motivated by the study of perturbation problems for the solut…