Search results for "Analisi Matematica"
showing 10 items of 811 documents
MR3098564 Reviewed Al-Thagafi, M. A.; Shahzad, Naseer Krasnosel'skii-type fixed-point results. J. Nonlinear Convex Anal. 14 (2013), no. 3, 483–491. (…
2014
The Krasnosel'skii fixed-point theorem is a powerful tool in dealing with various types of integro-differential equations. The initial motivation of this theorem is the fact that the inversion of a perturbed differential operator may yield the sum of a continuous compact mapping and a contraction mapping. Following and improving this idea, many fixed-point results were proved.\\ The authors present significant and interesting contributions in this direction. In particular, they give the following main theorem: \begin{theorem} Let $M$ be a nonempty bounded closed convex subset of a Banach space $E$, $S:M \to E$ and $T:M \to E$. Suppose that \begin{itemize} \item[(a)] $S$ is 1-set-contractive…
MR2986428 Lebedev, Leonid P.(CL-UNC); Vorovich, Iosif I.; Cloud, Michael J. Functional analysis in mechanics. Second edition. Springer Monographs in …
2014
Bollettino di Matematica pura e applicata
2020
The paper emphasizes some the advances of knowledge in mathematics problems ad new applications. The Bollettino is open to the contribution of Italian or foreign researchers.
On the representations in GF(3)^4 of the Hadamard design H_11
2020
In this paper we study the representations of the 2-(11,5,2) Hadamard design H_11 = (P,B) as a set of eleven points in the 4-dimensional vector space GF(3)^4, under the conditions that the five points in each block sum up to zero, and dim ‹P› = 4. We show that, up to linear automorphism, there exist precisely two distinct, linearly nonisomorphic representations, and, in either case, we characterize the family S of all the 5-subsets of P whose elements sum up to zero. In both cases, S properly contains the family of blocks B, thereby showing that a previous result on the representations of H_11 in GF(3)^5 cannot be improved.
Learning to Navigate in the Gaussian Mixture Surface
2021
In the last years, deep learning models have achieved remarkable generalization capability on computer vision tasks, obtaining excellent results in fine-grained classification problems. Sophisticated approaches based-on discriminative feature learning via patches have been proposed in the literature, boosting the model performances and achieving the state-of-the-art over well-known datasets. Cross-Entropy (CE) loss function is commonly used to enhance the discriminative power of the deep learned features, encouraging the separability between the classes. However, observing the activation map generated by these models in the hidden layer, we realize that many image regions with low discrimin…
MR2784504 Winter, Wilhelm Strongly self-absorbing C∗-algebras are Z-stable. J. Noncommut. Geom. 5 (2011), no. 2, 253–264. (Reviewer: Camillo Trapani)
2012
MR2681888El Harti, Rachid Extensions of σ-C∗-algebras. Operator algebras, operator theory and applications, 201–206, Oper. Theory Adv. Appl., 181, Bi…
2011
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
2021
We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space (Y,d,μ)(Y,d,μ) is infinitesimally Hilbertian, i.e. the Sobolev space W1,2(Y,d,μ)W1,2(Y,d,μ) is a Hilbert space. The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’ space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x∈Yx∈Y is the tangent cone at x of YY. The conclusion then follows from the fact that for every x∈Yx∈Y such a cone is a CAT(0)CAT(0) space and, as such, has a Hilbert-like structure. peerReviewed
Auxiliary seminorms and the structure of a CQ*-algebra
2005
After reviewing the main facts of the theory of CQ*-algebras, we give some new results on the structure of proper CQ*-algebras using some seminorms defined by certain families of positive sesquilinear forms.
A model of capillary phenomena in RN with subcritical growth
2020
This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.