Search results for "Analisi Matematica"
showing 10 items of 811 documents
Extensions of Representable Positive Linear Functionals to Unitized Quasi *-Algebras: A New Method
2014
In this paper we introduce a topological approach for extending a representable linear functional \({\omega}\), defined on a topological quasi *-algebra without unit, to a representable linear functional defined on a quasi *-algebra with unit. In particular, we suppose that \({\omega}\) is continuous and the positive sesquilinear form \({\varphi_\omega}\), associated with \({\omega}\), is closable and prove that the extension \({\overline{\varphi_\omega}^e}\) of the closure \({\overline{\varphi_\omega}}\) is an i.p.s. form. By \({\overline{\varphi_\omega}^e}\) we construct the desired extension.
$n$-th relative nilpotency degree and relative $n$-isoclinism classes
2011
P. Hall introduced the notion of isoclinism between two groups more than 60 years ago. Successively, many authors have extended such a notion in different contexts. The present paper deals with the notion of relative n-isoclinism, given by N. S. Hekster in 1986, and with the notion of n-th relative nilpotency degree, recently introduced in literature.
EXISTENCE OF THREE SOLUTIONS FOR A MIXED BOUNDARY VALUE PROBLEM WITH THE STURM-LIOUVILLE EQUATION
2012
Abstract. The aim of this paper is to establish the existence of threesolutions for a Sturm-Liouville mixed boundary value problem. The ap-proach is based on multiple critical points theorems. 1. IntroductionThe aim of this paper is to establish, under a suitable set of assumptions, theexistence of at least three solutions for the following Sturm-Liouville problemwith mixed boundary conditions(RS λ )ˆ−(pu ′ ) ′ +qu = λf(t,u) in I =]a,b[u(a) = u ′ (b) = 0,where λ is a positive parameter and p, q, f are regular functions. To be precise,if f : [a,b] × R→ Ris a L 2 -Carath´eodory function and p,q ∈ L ∞ ([a,b]) suchthatp 0 := essinf t∈[a,b] p(t) > 0, q 0 := essinf t∈[a,b] q(t) ≥ 0,then we prove …
Fixed points in weak non-Archimedean fuzzy metric spaces
2011
Mihet [Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008) 739-744] proved a theorem which assures the existence of a fixed point for fuzzy $\psi$-contractive mappings in the framework of complete non-Archimedean fuzzy metric spaces. Motivated by this, we introduce a notion of weak non-Archimedean fuzzy metric space and prove that the weak non-Archimedean fuzzy metric induces a Hausdorff topology. We utilize this new notion to obtain some common fixed point results for a pair of generalized contractive type mappings.
Common fixed point theorems of integral type for OWC mappings under relaxed condition
2017
In this paper, we prove a common fixed point theorem for a pair of occasionally weakly compatible (owc) self mappings satisfying a mixed contractive condition of integral type without using the triangle inequality. We prove also analogous results for two pairs of owc self mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement many results existing in the recent literature. Finally, we give an application of our results in dynamic programming.
Some common fixed point theorems for owc mappings with applications
2013
Starting from the setting of fuzzy metric spaces, we give some new common fixed point theorems for a pair of occasionally weakly compatible (owc) self-mappings satisfying a mixed contractive condition. In proving our results, we do not need to use the triangular inequality. Also we obtain analogous results for two pairs of owc self-mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement some results existing in the literature. Finally, we give some applications of our results.
Nonlinear quasi-contractions of Ciric type
2012
In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.
Weak commutation relations of unbounded operators and applications
2011
Four possible definitions of the commutation relation $[S,T]=\Id$ of two closable unbounded operators $S,T$ are compared. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space $\H$ where the operators act. Some consequences on the existence of eigenvectors of two number-like operators are derived and the partial O*-algebra generated by $S,T$ is studied. Some applications are also considered.
Variational differential inclusions without ellipticity condition
2020
The paper sets forth a new type of variational problem without any ellipticity or monotonicity condition. A prototype is a differential inclusion whose driving operator is the competing weighted $(p,q)$-Laplacian $-\Delta_p u+\mu\Delta_q u$ with $\mu\in \mathbb{R}$. Local and nonlocal boundary value problems fitting into this nonstandard setting are examined.
Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction
2020
We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Caratheodory terms. One is parametric, $$(p-1)$$-sublinear with a partially concave nonlinearity near zero. The other is $$(p-1)$$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $$\lambda >0$$ varies.