Search results for "Analisi Matematica"
showing 10 items of 811 documents
On fixed points of Berinde’s contractive mappings in cone metric spaces
2010
In this paper we establish some common fixed point theorems for two self-mappings satisfying a generalized contractive condition. This result generalizes well known comparable results in the literature. As an application, a necessary and sufficient condition for a fixed point to be a periodic point for the mapping involved therein, without appealing to continuity, in a cone metric space is established.
Fixed point results in cone metric spaces for contractions of Zamfirescu type
2010
We prove a result on points of coincidence and common fixed points in cone metric spaces for two self mappings satisfying a weak generalized contractive condition of Zamfirescu type. We deduce some results on common fixed points for two self mappings satisfying a weak contractive type condition. These results generalize some well-known recent results.
Differential structure associated to axiomatic Sobolev spaces
2020
The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure. peerReviewed
Coupled coincidence point results for (φ,ψ)-contractive mappings in partially ordered metric spaces
2014
Abstract. In this paper, we extend the coupled coincidence point theorems for a mixed g-monotone operator F : X × X → X $F:X\times X\rightarrow X$ obtained by Alotaibi and Alsulami [Fixed Point Theory Appl. (2011), article ID 44], by weakening the involved contractive condition. Two examples are given to illustrate the effectiveness of our generalizations. Our result also generalizes some recent results announced in the literature. Moreover, some applications to integral equations are presented.
Coupled fixed-point results for T-contractions on cone metric spaces with applications
2015
The notion of coupled fixed point was introduced in 2006 by Bhaskar and Lakshmikantham. On the other hand, Filipovićet al. [M. Filipovićet al., “Remarks on “Cone metric spaces and fixed-point theorems of T-Kannan and T-Chatterjea contractive mappings”,” Math. Comput. Modelling 54, 1467–1472 (2011)] proved several fixed and periodic point theorems for solid cones on cone metric spaces. In this paper we prove some coupled fixed-point theorems for certain T-contractions and study the existence of solutions of a system of nonlinear integral equations using the results of our work. The results of this paper extend and generalize well-known comparable results in the literature.
Coupled fixed point theorems for symmetric (phi,psi)-weakly contractive mappings in ordered partial metric spaces
2013
We establish some coupled fixed point theorems for symmetric (phi,chi)-weakly contractive mappings in ordered partial metric spaces. Some recent results of Berinde (Nonlinear Anal. 74 (2011), 7347-7355; Nonlinear Anal. 75 (2012), 3218-3228) and many others are extended and generalized to the class of ordered partial metric spaces.
Multiple solutions for semilinear Robin problems with superlinear reaction and no symmetries
2021
We study a semilinear Robin problem driven by the Laplacian with a parametric superlinear reaction. Using variational tools from the critical point theory with truncation and comparison techniques, critical groups and flow invariance arguments, we show the existence of seven nontrivial smooth solutions, all with sign information and ordered.
Existence of three solutions for a mixed boundary value system with (p_1,...,p_m)-Laplacian
2014
In this paper we prove the existence of at least three weak solutions for a mixed boundary value system with (p_1,,...,p_m)-Laplacian. The approach is based on variational methods.
A version of Hake’s theorem for Kurzweil–Henstock integral in terms of variational measure
2019
Abstract We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil–Henstock-type integral related to this basis. We prove a version of Hake’s theorem in terms of a variational measure.
Stieltjes Differential Inclusions with Periodic Boundary Conditions without Upper Semicontinuity
2021
We are studying first order differential inclusions with periodic boundary conditions where the Stieltjes derivative with respect to a left-continuous non-decreasing function replaces the classical derivative. The involved set-valued mapping is not assumed to have compact and convex values, nor to be upper semicontinuous concerning the second argument everywhere, as in other related works. A condition involving the contingent derivative relative to the non-decreasing function (recently introduced and applied to initial value problems by R.L. Pouso, I.M. Marquez Albes, and J. Rodriguez-Lopez) is imposed on the set where the upper semicontinuity and the assumption to have compact convex value…