Search results for "Angular"

showing 10 items of 1774 documents

Varieties of special Jordan algebras of almost polynomial growth

2019

Abstract Let J be a special Jordan algebra and let c n ( J ) be its corresponding codimension sequence. The aim of this paper is to prove that in case J is finite dimensional, such a sequence is polynomially bounded if and only if the variety generated by J does not contain U J 2 , the special Jordan algebra of 2 × 2 upper triangular matrices. As an immediate consequence, we prove that U J 2 is the only finite dimensional special Jordan algebra that generates a variety of almost polynomial growth.

PolynomialSequenceCodimension (Mathematics)Algebra and Number TheoryJordan algebra010102 general mathematicsTriangular matrixCodimensão (Matemática)CodimensionPolynomial identity01 natural sciencesIdentidade polinomialCombinatoricsSettore MAT/02 - AlgebraPolynomial identity codimension sequence Jordan algebra almost polynomial growthIdentityBounded functionIdentidade0103 physical sciencesArtigo original010307 mathematical physics0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Measurement of proton electromagnetic form factors in the time-like region using initial state radiation at BESIII

2021

Physics letters / B 817, 136328 (2021). doi:10.1016/j.physletb.2021.136328

Protonannihilation [electron positron]01 natural sciencesform factor [electron]High Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)BESIII; Electromagnetic form factors; Initial state radiation; ProtonSubatomic Physicsangular distributionNuclear ExperimentPhysicsPhysicsForm factor (quantum field theory)initial-state interaction [radiation]Beijing Stormagnetic [form factor]ratio [form factor]electron positron --> p anti-pcolliding beams [electron positron]ProtonInitial State Radiationpair production [p]electromagnetic [form factor]Born approximationNuclear and High Energy Physicsdata analysis methodQC1-999FOS: Physical sciencesRadiation5303.773-4.600 GeV-cmsNONuclear physicsCross section (physics)Angular distributionElectromagnetic form factors0103 physical sciencesform factor [p]tree approximationddc:530010306 general physicsinitial stateBES010308 nuclear & particles physicshelicity [p]BESIIIState (functional analysis)(p anti-p) [mass spectrum]Electromagnetic form FactorsHigh Energy Physics::Experimentproduction [threshold]Initial state radiationexperimental results
researchProduct

Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc

2003

Let ϕ \phi be a holomorphic self-map of the unit disc D \mathbb {D} . For every α ∈ ∂ D \alpha \in \partial \mathbb {D} , there is a measure τ α \tau _\alpha on ∂ D \partial \mathbb {D} (sometimes called Aleksandrov measure) defined by the Poisson representation Re ⁡ ( α + ϕ ( z ) ) / ( α − ϕ ( z ) ) = ∫ P ( z , ζ ) d τ α ( ζ ) \operatorname {Re}(\alpha +\phi (z))/(\alpha -\phi (z)) = \int P(z,\zeta ) \,d\tau _\alpha (\zeta ) . Its singular part σ α \sigma _\alpha measures in a natural way the “affinity” of ϕ \phi for the boundary value α \alpha . The affinity for values w w inside D \mathbb {D} is provided by the Nevanlinna counting function N ( w ) N(w) of ϕ \phi . We introduce a natural …

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisHolomorphic functionMultiplicity (mathematics)Poisson distribution01 natural sciencesBoundary values010101 applied mathematicssymbols.namesakesymbolsAngular derivative0101 mathematicsMathematicsTransactions of the American Mathematical Society
researchProduct

Abelian Gradings on Upper Block Triangular Matrices

2012

AbstractLet G be an arbitrary finite abelian group. We describe all possible G-gradings on upper block triangular matrix algebras over an algebraically closed field of characteristic zero.

Pure mathematicsComputer Science::Information RetrievalGeneral Mathematics010102 general mathematicsTriangular matrixZero (complex analysis)Block (permutation group theory)010103 numerical & computational mathematicsGradings Upper Block Triangular Matrices01 natural sciencesSettore MAT/02 - Algebra0101 mathematicsAbelian groupAlgebraically closed fieldArithmeticMathematicsCanadian Mathematical Bulletin
researchProduct

Local Spectral Properties Under Conjugations

2021

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.

Pure mathematicsGeneral MathematicsConjugations010102 general mathematicsSpectral propertiesLocal spectral propertiesHilbert space010103 numerical & computational mathematicsType (model theory)01 natural sciencesWeyl-type theorems for upper triangular operator matricessymbols.namesakeOperator matrixSettore MAT/05 - Analisi MatematicaCore (graph theory)symbols0101 mathematicsMathematics
researchProduct

Differential identities, 2 × 2 upper triangular matrices and varieties of almost polynomial growth

2019

Abstract We study the differential identities of the algebra U T 2 of 2 × 2 upper triangular matrices over a field of characteristic zero. We let the Lie algebra L = Der ( U T 2 ) of derivations of U T 2 (and its universal enveloping algebra) act on it. We study the space of multilinear differential identities in n variables as a module for the symmetric group S n and we determine the decomposition of the corresponding character into irreducibles. If V is the variety of differential algebras generated by U T 2 , we prove that unlike the other cases (ordinary identities, group graded identities) V does not have almost polynomial growth. Nevertheless we exhibit a subvariety U of V having almo…

Pure mathematicsPolynomialAlgebra and Number TheoryGroup (mathematics)Symmetric groupLie algebraTriangular matrixUniversal enveloping algebraDifferential algebraVariety (universal algebra)MathematicsJournal of Pure and Applied Algebra
researchProduct

Specht property for some varieties of Jordan algebras of almost polynomial growth

2019

Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraMathematics::Commutative AlgebraMathematics::Rings and Algebras010102 general mathematicsPolynomial identity specht property Jordan algebra codimensionZero (complex analysis)Triangular matrixField (mathematics)01 natural sciences0103 physical sciences010307 mathematical physicsIdeal (ring theory)Isomorphism0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Polynomial identities for the Jordan algebra of upper triangular matrices of order 2

2012

Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraTriangular matrixJordan polynomial identities graded upper triangularCyclic groupField (mathematics)CodimensionBasis (universal algebra)CombinatoricsSettore MAT/02 - AlgebraOrder (group theory)Mathematics
researchProduct

Growth of Differential Identities

2020

In this paper we study the growth of the differential identities of some algebras with derivations, i.e., associative algebras where a Lie algebra L (and its universal enveloping algebra U(L)) acts on them by derivations. In particular, we study in detail the differential identities and the cocharacter sequences of some algebras whose sequence of differential codimensions has polynomial growth. Moreover, we shall give a complete description of the differential identities of the algebra UT2 of 2 × 2 upper triangular matrices endowed with all possible action of a Lie algebra by derivations. Finally, we present the structure of the differential identities of the infinite dimensional Grassmann …

Pure mathematicsPolynomialSequenceLie algebraStructure (category theory)Triangular matrixUniversal enveloping algebraAssociative propertyDifferential (mathematics)Mathematics
researchProduct

Quotients of triangular numbers

2015

Pure mathematicsTriangular numberGeneral MathematicsQuotientMathematicsThe Mathematical Gazette
researchProduct