Search results for "Angular"
showing 10 items of 1774 documents
Varieties of special Jordan algebras of almost polynomial growth
2019
Abstract Let J be a special Jordan algebra and let c n ( J ) be its corresponding codimension sequence. The aim of this paper is to prove that in case J is finite dimensional, such a sequence is polynomially bounded if and only if the variety generated by J does not contain U J 2 , the special Jordan algebra of 2 × 2 upper triangular matrices. As an immediate consequence, we prove that U J 2 is the only finite dimensional special Jordan algebra that generates a variety of almost polynomial growth.
Measurement of proton electromagnetic form factors in the time-like region using initial state radiation at BESIII
2021
Physics letters / B 817, 136328 (2021). doi:10.1016/j.physletb.2021.136328
Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc
2003
Let ϕ \phi be a holomorphic self-map of the unit disc D \mathbb {D} . For every α ∈ ∂ D \alpha \in \partial \mathbb {D} , there is a measure τ α \tau _\alpha on ∂ D \partial \mathbb {D} (sometimes called Aleksandrov measure) defined by the Poisson representation Re ( α + ϕ ( z ) ) / ( α − ϕ ( z ) ) = ∫ P ( z , ζ ) d τ α ( ζ ) \operatorname {Re}(\alpha +\phi (z))/(\alpha -\phi (z)) = \int P(z,\zeta ) \,d\tau _\alpha (\zeta ) . Its singular part σ α \sigma _\alpha measures in a natural way the “affinity” of ϕ \phi for the boundary value α \alpha . The affinity for values w w inside D \mathbb {D} is provided by the Nevanlinna counting function N ( w ) N(w) of ϕ \phi . We introduce a natural …
Abelian Gradings on Upper Block Triangular Matrices
2012
AbstractLet G be an arbitrary finite abelian group. We describe all possible G-gradings on upper block triangular matrix algebras over an algebraically closed field of characteristic zero.
Local Spectral Properties Under Conjugations
2021
AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.
Differential identities, 2 × 2 upper triangular matrices and varieties of almost polynomial growth
2019
Abstract We study the differential identities of the algebra U T 2 of 2 × 2 upper triangular matrices over a field of characteristic zero. We let the Lie algebra L = Der ( U T 2 ) of derivations of U T 2 (and its universal enveloping algebra) act on it. We study the space of multilinear differential identities in n variables as a module for the symmetric group S n and we determine the decomposition of the corresponding character into irreducibles. If V is the variety of differential algebras generated by U T 2 , we prove that unlike the other cases (ordinary identities, group graded identities) V does not have almost polynomial growth. Nevertheless we exhibit a subvariety U of V having almo…
Specht property for some varieties of Jordan algebras of almost polynomial growth
2019
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Polynomial identities for the Jordan algebra of upper triangular matrices of order 2
2012
Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…
Growth of Differential Identities
2020
In this paper we study the growth of the differential identities of some algebras with derivations, i.e., associative algebras where a Lie algebra L (and its universal enveloping algebra U(L)) acts on them by derivations. In particular, we study in detail the differential identities and the cocharacter sequences of some algebras whose sequence of differential codimensions has polynomial growth. Moreover, we shall give a complete description of the differential identities of the algebra UT2 of 2 × 2 upper triangular matrices endowed with all possible action of a Lie algebra by derivations. Finally, we present the structure of the differential identities of the infinite dimensional Grassmann …