Search results for "Ansatz"
showing 10 items of 113 documents
Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants
1996
A theory for the calculation of nuclear magnetic shielding constants at the coupled‐cluster singles and doubles level augmented by a perturbative correction for connected triple excitations (CCSD(T)) has been developed and implemented. The approach, which is based on the gauge‐including atomic orbital (GIAO) ansatz, is illustrated by several numerical examples. These include a comparison of CCSD(T) and other highly correlated methods with full configuration interaction for the BH molecule, and a systematic comparison with experiment for HF, H2O,NH3, CH4, N2, CO, HCN, and F2. The results demonstrate the importance of triple excitations in establishing quantitative accuracy. Finally, the abil…
Dark spatial solitary waves in a cubic-quintic-septimal nonlinear medium
2017
We consider the evolution of light beams in nonlinear media exhibiting nonlinearities up to the seventh order wherein the beam propagation is governed by the cubic-quintic-septimal nonlinear Schr\"odinger equation. An exact analytic solution that describes dark solitary wave propagation is obtained, based on a special ansatz. Unlike the well-known $\text{tanh}$-profile dark soliton in Kerr media, the present one has a functional form given in terms of ``${\text{sech}}^{2/3}$''. The requirements concerning the optical material parameters for the existence of this localized structure are discussed. This propagating solitary wave exists due to a balance among diffraction, cubic, quintic, and s…
Thin bases of order h
2003
Abstract A subset A⊆ N 0 is called a basis of order h if every positive integer can be represented as a sum of h members of A . Thin bases of order h will be constructed in this paper, for each h ⩾2, where the value of lim sup A(n)/ n h is smaller than that of thin bases known so far. In the most important case h =2 it is shown that for the considered class of bases (which generalizes an ansatz of Stohr) the result is best possible up to an e >0.
Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …
2014
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…
Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects
2000
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
The discretized harmonic oscillator: Mathieu functions and a new class of generalized Hermite polynomials
2003
We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansa…
Magnetised Polish doughnuts revisited
2017
We discuss a procedure to build new sequences of magnetised, equilibrium tori around Kerr black holes which combines two approaches previously considered in the literature. For simplicity we assume that the test-fluid approximation holds, and hence we neglect the self-gravity of the fluid. The models are built assuming a particular form of the angular momentum distribution from which the location and morphology of equipotential surfaces can be computed. This ansatz includes, in particular, the constant angular momentum case originally employed in the construction of thick tori - or Polish doughnuts - and it has already been used to build equilibrium sequences of purely hydrodynamical models…
Adiabatic regularization for Dirac fields in time-varying electric backgrounds
2020
The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…
Adiabatic regularization and particle creation for spin one-half fields
2013
The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Gluon mass generation without seagull divergences
2009
Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for t…