Search results for "Ansatz"

showing 10 items of 113 documents

Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants

1996

A theory for the calculation of nuclear magnetic shielding constants at the coupled‐cluster singles and doubles level augmented by a perturbative correction for connected triple excitations (CCSD(T)) has been developed and implemented. The approach, which is based on the gauge‐including atomic orbital (GIAO) ansatz, is illustrated by several numerical examples. These include a comparison of CCSD(T) and other highly correlated methods with full configuration interaction for the BH molecule, and a systematic comparison with experiment for HF, H2O,NH3, CH4, N2, CO, HCN, and F2. The results demonstrate the importance of triple excitations in establishing quantitative accuracy. Finally, the abil…

Density matrixCoupled clusterMagnetic momentAtomic orbitalChemistryElectromagnetic shieldingGeneral Physics and AstronomyPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsConfiguration interactionFull configuration interactionAnsatzThe Journal of Chemical Physics
researchProduct

Dark spatial solitary waves in a cubic-quintic-septimal nonlinear medium

2017

We consider the evolution of light beams in nonlinear media exhibiting nonlinearities up to the seventh order wherein the beam propagation is governed by the cubic-quintic-septimal nonlinear Schr\"odinger equation. An exact analytic solution that describes dark solitary wave propagation is obtained, based on a special ansatz. Unlike the well-known $\text{tanh}$-profile dark soliton in Kerr media, the present one has a functional form given in terms of ``${\text{sech}}^{2/3}$''. The requirements concerning the optical material parameters for the existence of this localized structure are discussed. This propagating solitary wave exists due to a balance among diffraction, cubic, quintic, and s…

DiffractionPhysicsWave propagationOrder (ring theory)01 natural sciencesQuintic function010309 opticsNonlinear systemNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicsNonlinear medium0103 physical sciencesSoliton010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsAnsatzPhysical Review A
researchProduct

Thin bases of order h

2003

Abstract A subset A⊆ N 0 is called a basis of order h if every positive integer can be represented as a sum of h members of A . Thin bases of order h will be constructed in this paper, for each h ⩾2, where the value of lim sup A(n)/ n h is smaller than that of thin bases known so far. In the most important case h =2 it is shown that for the considered class of bases (which generalizes an ansatz of Stohr) the result is best possible up to an e >0.

Discrete mathematicsCombinatoricsClass (set theory)Algebra and Number TheoryIntegerOrder (group theory)Value (computer science)Basis (universal algebra)MathematicsAnsatzJournal of Number Theory
researchProduct

Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …

2014

In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…

Equilibrium pointNumerical AnalysisNonlinear Sciences - Exactly Solvable and Integrable SystemsSeries (mathematics)Homoclinic and heteroclinic orbitApplied MathematicsMathematical analysisFOS: Physical sciencesMathematical Physics (math-ph)Phase planeTraveling waveNonlinear systemSPE and generalized SPE equationModeling and SimulationSaddle pointHomoclinic orbitExactly Solvable and Integrable Systems (nlin.SI)Singular solutionVariational solitary wavesSettore MAT/07 - Fisica MatematicaMathematical PhysicsConvergent seriesAnsatzMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

2000

We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

General Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron01 natural sciencesResonance (particle physics)Bethe ansatzCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAharonov–Bohm effectPhysicsMesoscopic physicsCondensed Matter - Mesoscale and Nanoscale PhysicsNonlinear Sciences - Exactly Solvable and Integrable SystemsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Persistent currentQuantum Physics021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum dotsymbolsKondo effectExactly Solvable and Integrable Systems (nlin.SI)0210 nano-technology
researchProduct

The discretized harmonic oscillator: Mathieu functions and a new class of generalized Hermite polynomials

2003

We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansa…

Hermite polynomialsDifferential equationFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Hermitian matrixAlgebraic equationsymbols.namesakeMathieu functionsymbolsApplied mathematicsMathematical PhysicsEigenvalues and eigenvectorsHarmonic oscillatorMathematicsAnsatzJournal of Mathematical Physics
researchProduct

Magnetised Polish doughnuts revisited

2017

We discuss a procedure to build new sequences of magnetised, equilibrium tori around Kerr black holes which combines two approaches previously considered in the literature. For simplicity we assume that the test-fluid approximation holds, and hence we neglect the self-gravity of the fluid. The models are built assuming a particular form of the angular momentum distribution from which the location and morphology of equipotential surfaces can be computed. This ansatz includes, in particular, the constant angular momentum case originally employed in the construction of thick tori - or Polish doughnuts - and it has already been used to build equilibrium sequences of purely hydrodynamical models…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAngular momentumAccretion (meteorology)010308 nuclear & particles physicsGeneral relativityEquipotential surfaceFOS: Physical sciencesAstronomy and AstrophysicsTorus83C55 83C57 83C55General Relativity and Quantum Cosmology (gr-qc)Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyClassical mechanicsSpace and Planetary Science0103 physical sciencesConstant (mathematics)Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsDistribution (differential geometry)Ansatz
researchProduct

Adiabatic regularization for Dirac fields in time-varying electric backgrounds

2020

The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsConformal anomalyScalar (mathematics)FOS: Physical sciencesField strengthGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsElectric fieldRegularization (physics)0103 physical sciences010306 general physicsAdiabatic processAnsatzVector potentialPhysical Review
researchProduct

Adiabatic regularization and particle creation for spin one-half fields

2013

The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeFOS: Physical sciencesFísicaGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)Adiabatic quantum computationGeneral Relativity and Quantum CosmologyWKB approximationRenormalizationsymbols.namesakeGeneral Relativity and Quantum CosmologyClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac fermionRegularization (physics)symbolsAdiabatic processMathematical PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physicsAnsatz
researchProduct

Gluon mass generation without seagull divergences

2009

Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for t…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Mass generationHigh Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesPropagatorFísicaIntegral equationEffective nuclear chargeGluonHigh Energy Physics - PhenomenologyDimensional regularizationTheoretical physicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum electrodynamicsRegularization (physics)Nuclear ExperimentAnsatz
researchProduct