Search results for "Antimatter"

showing 10 items of 64 documents

Accumulation of positrons from a LINAC based source

2020

International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.

010302 applied physicsPhysicsMeasure (physics)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyGravitational acceleration01 natural sciencesLinear particle acceleratorPositroniumNuclear physicsPositronPositron plasma; Positron accumulation; Antimatter; Penning-Malmberg trap; Greaves-Surko trap; GBAR[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]AntiprotonAntimatter0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physics::Accelerator PhysicsPhysics::Atomic Physics0210 nano-technologyAntihydrogenComputingMilieux_MISCELLANEOUSActa Physica Polonica A
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct

Sixfold improved single particle measurement of the magnetic moment of the antiproton

2017

Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…

AntiparticleParticle physicsLorentz transformationSciencelorentzGeneral Physics and Astronomysystem01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCosmologyNuclear physicssymbols.namesakeStandard-Model Extension0103 physical sciencesNuclear Physics - Experimentcpt010306 general physicsNuclear ExperimentPhysicsMultidisciplinary010308 nuclear & particles physicsQpenning trapParity (physics)General ChemistryPenning trapAntiprotonAntimattersymbolstestsddc:500Präzisionsexperimente - Abteilung Blaum
researchProduct

Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

2012

Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accu…

Antiparticlesuperconductivity [solenoid]Physics::Instrumentation and DetectorsPenning trapGeneral Physics and Astronomybeam transportSuperconducting magnetlaw.inventionenergy spectrum [positron]Nuclear physicslawddc:530AntihydrogenPhysicsElectromagnetspatial distribution [magnetic field]ATRAPPenning trapMagnetic fieldbeam opticscryogenicsAntimatterMagnetPhysics::Accelerator Physicsaccumulator [positron]Atomic physicsperformanceNew Journal of Physics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter

2008

ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e+) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e−) that are used to cool Pbars and e+, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise f…

Condensed Matter::Quantum GasesPhysicsAntiparticleElectronPenning trapNuclear physicsAntiproton DeceleratorAntiprotonAntimatterQuadrupolePhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsAntihydrogenAIP Conference Proceedings
researchProduct

Antihydrogen production within a Penning-Ioffe trap.

2008

Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

Condensed Matter::Quantum GasesPhysicsAntiparticleGeneral Physics and AstronomyPenning trapTrap (computing)Nuclear physicsAntiprotonAntimatterQuadrupolePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsIon trapAtomic physicsAntihydrogenPhysical review letters
researchProduct

Antiproton confinement in a Penning-Ioffe trap for antihydrogen.

2007

Antiprotons ((p) over bar) remain confined in a Penning trap, in sufficient numbers to form antihydrogen ((H) over bar) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with (p) over bar suggests that quadrupole Ioffe traps can be superimposed upon (p) over bar and e(+) traps to attempt the capture of (H) over bar atoms as they form, contrary to conclusions of previous analyses.

Condensed Matter::Quantum GasesPhysicsAntiparticleHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyPenning trapJNuclear physicsAntiprotonAntimatterQuadrupoleddc:550Physics::Atomic and Molecular ClustersHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsQuadrupole ion trapAntihydrogenPhysical review letters
researchProduct

Electron-cooled accumulation of 4 × 109positrons for production and storage of antihydrogen atoms

2016

Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen () production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

Condensed Matter::Quantum GasesPhysicsPhysics::General PhysicsAntiparticleAnnihilationPlasmaElectronCondensed Matter PhysicsPenning trap01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNuclear physicsTorrAntimatter0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physics010306 general physicsAntihydrogenJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Pumped helium system for cooling positron and electron traps to 1.2 K

2011

Abstract Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H ¯ ) atoms. H ¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H…

Condensed Matter::Quantum GasesSuperconductivityPhysicsantihydrogenNuclear and High Energy Physicsliquid heliumLiquid heliumPenning trapchemistry.chemical_elementElectronAtmospheric temperature rangePenning traplaw.inventionchemistrylawAntimatterantiprotonrefrigeratorPhysics::Atomic PhysicsAtomic physicsAntihydrogenInstrumentationHelium
researchProduct