Search results for "Antiparticle"
showing 10 items of 69 documents
Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange
2016
Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…
Sixfold improved single particle measurement of the magnetic moment of the antiproton
2017
Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…
Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies
2012
Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accu…
Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter
2008
ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e+) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e−) that are used to cool Pbars and e+, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise f…
Antihydrogen production within a Penning-Ioffe trap.
2008
Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.
Antiproton confinement in a Penning-Ioffe trap for antihydrogen.
2007
Antiprotons ((p) over bar) remain confined in a Penning trap, in sufficient numbers to form antihydrogen ((H) over bar) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with (p) over bar suggests that quadrupole Ioffe traps can be superimposed upon (p) over bar and e(+) traps to attempt the capture of (H) over bar atoms as they form, contrary to conclusions of previous analyses.
Electron-cooled accumulation of 4 × 109positrons for production and storage of antihydrogen atoms
2016
Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen () production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.
Unitarity Triangle from CP invariant quantities
2006
We construct the CKM unitarity triangle from CP invariant quantities, using the coupling constant of weak decays with flavor change from b to u, and the particle - antiparticle mixing probability in the B_s and B_d systems. Also included are new measurements of the coupling V_us in Kaon decays. Of the two solutions, one agrees perfectly with the triangle constructed from CP violating processes in the K and B meson systems. The common solution yields a triangle with an area of J/2 = (1.51 +/- 0.09) x 10^{-5} and a CP violating phase gamma = 63.1^o +/- 4.0^o.
Mass, zero mass and ... nophysics
2017
In this paper we demonstrate that massless particles cannot be considered as limiting case of massive particles. Instead, the usual symmetry structure based on semisimple groups like $U(1)$, $SU(2)$ and $SU(3)$ has to be replaced by less usual solvable groups like the minimal nonabelian group ${\rm sol}_2$. Starting from the proper orthochronous Lorentz group ${\rm Lor}_{1,3}$ we extend Wigner's little group by an additional generator, obtaining the maximal solvable or Borel subgroup ${\rm Bor}_{1,3}$ which is equivalent to the Kronecker sum of two copies of ${\rm sol}_2$, telling something about the helicity of particle and antiparticle states.
Evolution of mixed particles interacting with classical sources
2006
We study the systems of scalar and spinor particles with mixing emitted by external classical sources. The particles wave functions exactly accounting for external sources are obtained directly from the Lorentz invariant wave equations in (3+1)-dimensional space-time. Then we discuss sources which are localized in space and emit harmonic radiation. We obtain that the considered scalar and spinor fields can be converted from one type to another due to the presence of the vacuum mixing. This phenomenon is shown to be analogous to neutrino flavor oscillations in vacuum since the calculated transition and survival probabilities coincide with the corresponding expressions for neutrino oscillatio…