Search results for "App"
showing 10 items of 28370 documents
A comprehensive probabilistic analysis of approximate SIR‐type epidemiological models via full randomized discrete‐time Markov chain formulation with…
2020
Spanish Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Generalitat Valenciana, Grant/Award Number: APOSTD/2019/128; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P
Existence of fixed point for GP(Λ;Θ)-contractive mappings in GP-metric spaces
2017
We combine some classes of functions with a notion of hybrid $GP_{(\Lambda,\Theta )}$ - $H$ - $F$ - contractive mapping for establishing some fixed point results in the setting of $GP$-metric spaces. An illustrative example supports the new theory.
Elliptic equations and maps of bounded length distortion
1988
On considere l'equation elliptique d'ordre 2: L(u)=Σ i,f=1 n ∂ 1 (a ij ∂ ju )=0 ou les coefficients a ij sont des fonctions C 1 dans un domaine D de R n
Characteristic asymptotics for fast chemical reaction
1995
The tusk condition and Petrovskiĭ criterion for the normalized p‐parabolic equation
2019
We study boundary regularity for the normalized p-parabolic equation in arbitrary bounded domains. Effros and Kazdan (Indiana Univ. Math. J. 20 (1970) 683-693) showed that the so-called tusk condit ...
A singularly perturbed Kirchhoff problem revisited
2020
Abstract In this paper, we revisit the singularly perturbation problem (0.1) − ( ϵ 2 a + ϵ b ∫ R 3 | ∇ u | 2 ) Δ u + V ( x ) u = | u | p − 1 u in R 3 , where a , b , ϵ > 0 , 1 p 5 are constants and V is a potential function. First we establish the uniqueness and nondegeneracy of positive solutions to the limiting Kirchhoff problem − ( a + b ∫ R 3 | ∇ u | 2 ) Δ u + u = | u | p − 1 u in R 3 . Then, combining this nondegeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of solutions to (0.1) for ϵ > 0 sufficiently small. Finally, we establish a local uniqueness result for such derived solutions using this nondegeneracy result and a type of local Pohozaev identity.
A note on Jordan’s inequality
2020
Abstract In this paper we obtain some bounds in terms of polynomials for the function sin x x {{\sin x} \over x} , x ∈ [0, π].
Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations
2016
Abstract In this paper we approximate a Kantorovich potential and a transport density for the mass transport problem of two measures (with the transport cost given by a Finsler distance), by taking limits, as p goes to infinity, to a family of variational problems of p-Laplacian type. We characterize the Euler–Lagrange equation associated to the variational Kantorovich problem. We also obtain different characterizations of the Kantorovich potentials and a Benamou–Brenier formula for the transport problem.
ORBITALLY NONEXPANSIVE MAPPINGS
2015
We define a class of nonlinear mappings which is properly larger than the class of nonexpansive mappings. We also give a fixed point theorem for this new class of mappings.
Global Existence for Nonlinear Parabolic Problems With Measure Data– Applications to Non-uniqueness for Parabolic Problems With Critical Gradient ter…
2011
Abstract In the present article we study global existence for a nonlinear parabolic equation having a reaction term and a Radon measure datum: where 1 < p < N, Ω is a bounded open subset of ℝN (N ≥ 2), Δpu = div(|∇u|p−2∇u) is the so called p-Laplacian operator, sign s ., ϕ(ν0) ∈ L1(Ω), μ is a finite Radon measure and f ∈ L∞(Ω×(0, T)) for every T > 0. Then we apply this existence result to show wild nonuniqueness for a connected nonlinear parabolic problem having a gradient term with natural growth.