Search results for "Aquaporins"

showing 10 items of 22 documents

Tonoplast aquaporins facilitate lateral root emergence\ud

2016

Pôle SPE IPM UB; International audience; Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the mai…

0106 biological sciences0301 basic medicinePhysiology[SDV]Life Sciences [q-bio]MeristemPopulationArabidopsisMorphogenesisAquaporinPlant ScienceAquaporinsPlant Roots01 natural sciences03 medical and health sciencesGene Expression Regulation PlantArabidopsisGeneticsProtein IsoformsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyeducationeducation.field_of_studyMicroscopy ConfocalWater transportbiologyurogenital systemArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingLateral rootQKGene Expression Regulation DevelopmentalWaterBiological TransportArticlesMeristemPlants Genetically Modifiedbiology.organism_classificationMolecular biologyCell biology030104 developmental biologyMutationVacuoles[SDE]Environmental Sciences010606 plant biology & botany
researchProduct

Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins.

2003

Flooding of soils results in acute oxygen deprivation (anoxia) of plant roots during winter in temperate latitudes, or after irrigation1, and is a major problem for agriculture. One early response of plants to anoxia and other environmental stresses is downregulation of water uptake due to inhibition of the water permeability (hydraulic conductivity) of roots (Lpr)2,3,4,5. Root water uptake is mediated largely by water channel proteins (aquaporins) of the plasma membrane intrinsic protein (PIP) subgroup6,7,8. These aquaporins may mediate stress-induced inhibition of Lpr2,4,9 but the mechanisms involved are unknown. Here we delineate the whole-root and cell bases for inhibition of water upta…

0106 biological sciencesCell signalingMagnetic Resonance SpectroscopyCell RespirationArabidopsisAquaporin[SDV.BC]Life Sciences [q-bio]/Cellular BiologyGatingBiologyAquaporins01 natural sciencesPlant RootsPermeability03 medical and health sciencesXenopus laevisCytosolAnimalsComputingMilieux_MISCELLANEOUS030304 developmental biologyPlant Diseases0303 health sciencesMultidisciplinaryWater transportMajor intrinsic proteinsWaterBiological TransportHydrogen-Ion Concentration6. Clean waterOxygenCytosolBiochemistryBiophysicsOocytesMembrane channelSignal transductionProtonsABSORPTION HYDRIQUEIon Channel Gating010606 plant biology & botanyNature
researchProduct

Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

2011

International audience; Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophospha…

0106 biological sciencesPhysiologyProtein storage vacuoleProton-pumping pyrophosphataseArabidopsisPlant ScienceVacuoleUNIQUEMESH: Protein Isoforms01 natural sciencesPYROPHOSPHATASEArabidopsisProtein IsoformsMESH: ArabidopsisH+-ATPASETONOPLAST INTRINSIC PROTEINPLANT-CELLSCation Transport ProteinsIN-VIVOPlant Proteinschemistry.chemical_classification0303 health sciencesMESH: Plant ProteinsGeneral MedicineCell biologyProtein TransportVacuolar acidificationLytic cycleSeedsPREVACUOLAR COMPARTMENTMESH: DesiccationVacuolar Proton-Translocating ATPasesMESH: Protein TransportMESH: Vacuolar Proton-Translocating ATPasesGerminationMESH: Arabidopsis ProteinsMESH: GerminationBiologyAquaporinsMESH: Vacuoles03 medical and health sciencesMESH: AquaporinsMESH: Cation Transport ProteinsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyLytic vacuoleDesiccation030304 developmental biologySeedArabidopsis ProteinsCell Biologybiology.organism_classificationTRANSPORTchemistryMESH: SeedsVacuolesVacuoleMEMBRANEMOBILIZATION010606 plant biology & botany
researchProduct

Aquaporins and Brain Tumors

2016

Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization …

0301 basic medicinePathologymedicine.medical_specialtyAngiogenesisAquaporinReviewBiologyBlood–brain barrieraquaporins (AQPs)Catalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesglioblastoma multiforme0302 clinical medicineEdemaGliomaSettore BIO/10 - Biochimicaaquaporins (AQPs); blood–brain barrier (BBB); brain tumors; extracellular vesicles (EVs); glioblastoma multiformemedicineBiomarkers TumorAnimalsHumansPhysical and Theoretical ChemistrySettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5Molecular BiologySpectroscopyTight junctionBrain NeoplasmsSettore MED/27 - NeurochirurgiaOrganic ChemistryCancerGeneral Medicinemedicine.diseaseblood–brain barrier (BBB)Computer Science ApplicationsEndothelial stem cell030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Blood-Brain Barrierbrain tumorsmedicine.symptomextracellular vesicles (EVs)Glioblastoma030217 neurology & neurosurgerybrain tumor
researchProduct

Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage

2018

Diabetic macroangiopathy - a specific form of accelerated atherosclerosis - is characterized by intra-plaque new vessel formation due to excessive/abnormal neovasculogenesis and angiogenesis, increased vascular permeability of the capillary vessels, and tissue edema, resulting in frequent atherosclerotic plaque hemorrhage and plaque rupture. Mechanisms that may explain the premature and rapidly progressive nature of atherosclerosis in diabetes are multiple, and to a large extent still unclear. However, mechanisms related to hyperglycemia certainly play an important role. These include a dysregulated vascular regeneration. In addition, oxidative and hyperosmolar stresses, as well as the acti…

0301 basic medicineProteomicsPhysiologyAngiogenesisAquaporinMetabolomicVascular permeability030204 cardiovascular system & hematologyDiabeteBioinformaticsAquaporins03 medical and health sciences0302 clinical medicineDiabetes mellitusMedicineMetabolomicsMacrovascular diseasePharmacologybusiness.industryAquaporinRegeneration (biology)DiabetesPlaque rupturemedicine.diseaseAtherosclerosisAquaporins; Atherosclerosis; Diabetes; Hyperglycemia; Metabolomics; Proteomics030104 developmental biologyAtherosclerosiHyperglycemiaHigh glucoseMolecular Medicinebusiness
researchProduct

Expression of aquaporins early in human pregnancy

2011

Abstract Background Aquaporins (AQPs) constitute a family of channel proteins implicated in transmembrane water transport. Thirteen different AQPs (AQP0–12) have been described but their precise biologic function still remains unclear. AQPs 1, 3, 4, 8, and 9 expression has been described in human chorion, amnion and placenta; however, AQP4 is the only that has been identified in the first trimester of human pregnancy. Objective To assess multiplicity of AQPs expression from 10th to 14th week gestation. Population and methods Chorionic villi samples (CVS) collected in pregnant women for prenatal diagnosis were analysed by real time-PCR to assess cDNA expression of AQPs 1, 2, 3, 4, 5, 6, 7, 8…

Adultmedicine.medical_specialtyKaryotypePopulationChorionic villus samplingPrenatal diagnosisBiologyAquaporinsAndrologyPregnancyPlacentaInternal medicinemedicineHumansRNA Messengereducationreproductive and urinary physiologyPregnancyeducation.field_of_studyWater transportmedicine.diagnostic_testObstetrics and Gynecologymedicine.diseasePregnancy Trimester Firstmedicine.anatomical_structureEndocrinologyOrgan Specificityembryonic structuresPediatrics Perinatology and Child HealthChorionic villiFemaleChorionic VilliTrisomyEarly Human Development
researchProduct

Anionic Lipids Modulate the Activity of the Aquaglyceroporin GlpF

2015

AbstractThe structure and composition of a biological membrane can severely influence the activity of membrane-embedded proteins. Here, we show that the E. coli aquaglyceroporin GlpF has only little activity in lipid bilayers formed from native E. coli lipids. Thus, at first glance, GlpF appears to not be optimized for its natural membrane environment. In fact, we found that GlpF activity was severely affected by negatively charged lipids regardless of the exact chemical nature of the lipid headgroup, whereas GlpF was not sensitive to changes in the lateral membrane pressure. These observations illustrate a potential mechanism by which the activity of an α-helical membrane protein is modula…

AnionsLiposomeMembranesEscherichia coli ProteinsBiophysicsAquaporinBiological membraneBiologyAquaporinsLipidsCell biologyMembraneMembrane proteinNegative chargeLiposomesEscherichia colilipids (amino acids peptides and proteins)Lipid bilayerPotential mechanismBiophysical Journal
researchProduct

The tetrameric α-helical membrane protein GlpF unfolds via a dimeric folding intermediate.

2011

Many membrane proteins appear to be present and functional in higher-order oligomeric states. While few studies have analyzed the thermodynamic stability of α-helical transmembrane (TM) proteins under equilibrium conditions in the past, oligomerization of larger polytopic monomers has essentially not yet been studied. However, it is vital to study the folding of oligomeric membrane proteins to improve our understanding of the general mechanisms and pathways of TM protein folding. To investigate the folding and stability of the aquaglyceroporin GlpF from Escherichia coli, unfolding of the protein in mixed micelles was monitored by steady-state fluorescence and circular dichroism spectroscopy…

Gel electrophoresisCircular dichroismProtein FoldingChemistryCircular DichroismEscherichia coli ProteinsMembrane ProteinsAquaporinsBiochemistryMicelleTransmembrane proteinProtein Structure SecondaryFolding (chemistry)CrystallographyKineticsMembrane proteinBiophysicsEscherichia coliProtein foldingChemical stabilityDimerizationProtein UnfoldingBiochemistry
researchProduct

The inhibition of glycerol permeation through aquaglyceroporin-3 induced by mercury(II)

2016

Mercurial compounds are known to inhibit water permeation through aquaporins (AQPs). Although in the last years some hypotheses were proposed, the exact mechanism of inhibition is still an open question and even less is known about the inhibition of the glycerol permeation through aquaglyceroporins. Molecular dynamics (MD) simulations of human aquaporin-3 (AQP3) have been performed up to 200 ns in the presence of Hg2+ ions. For the first time, we have observed the unbiased passage of a glycerol molecule from the extracellular to cytosolic side. Moreover, the presence of Hg2+ ions covalently bound to Cys40 leads to a collapse of the aromatic/arginine selectivity filter (ar/R SF), blocking th…

Glycerol0301 basic medicineMolecular dynamicCell Membrane PermeabilityBiochemistryProtein Structure Secondarychemistry.chemical_compoundGLPFCOORDINATIONCRYSTALEscherichia coli ProteinsPermeationBiochemistryCovalent bondSettore CHIM/03 - Chimica Generale E InorganicaPhosphatidylcholinesCOMPLEXESProtein BindingSTRUCTURAL BASISCations DivalentPlasmodium falciparumAquaporinCYSTEINE-189Molecular Dynamics SimulationMolecular dynamicsAquaporinsWATER CHANNELInorganic Chemistry03 medical and health sciencesEscherichia coliGlycerolExtracellularHumansMoleculePERMEABILITYProtein Structure QuaternaryAquaporin 3Binding SitesAQUAPORIN INHIBITIONWaterBiological TransportMembranes ArtificialAquaglyceroporinMercurySIMULATIONSProtein Structure TertiaryCytosolWater permeation030104 developmental biologyAquaglyceroporinschemistryStructural Homology ProteinBiophysicsGlycerol permeationJournal of Inorganic Biochemistry
researchProduct

Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy

2021

High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF)…

GlycerolInfrared spectroscopyAquaporinPROTEINAquaporinsVIBRATIONAL SPECTROSCOPYMolecular dynamicsCHANNELElectrochemistryGeneral Materials SciencePEPTIDESpectroscopyCRYSTALChemistryEscherichia coli ProteinsSpectrum AnalysisMembrane structureWaterSurfaces and InterfacesCondensed Matter PhysicsBILAYERGLYCEROLINTERFACEMembraneMembrane proteinMOLECULAR-DYNAMICSBiophysicsMembrane channelORIENTATIONSum frequency generation spectroscopy
researchProduct