Search results for "Arabo"

showing 10 items of 151 documents

Local regularity for time-dependent tug-of-war games with varying probabilities

2016

We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain H\"older and Harnack estimates. The games have a connection to the normalized $p(x,t)$-parabolic equation $(n+p(x,t))u_t=\Delta u+(p(x,t)-2) \Delta_{\infty}^N u$.

Computer Science::Computer Science and Game TheoryPure mathematicsparabolic p(xTug of warMathematics::Analysis of PDEsHölder condition01 natural sciencesMathematics - Analysis of PDEsFOS: Mathematicsstochastic gamestug-of-war0101 mathematicsConnection (algebraic framework)Harnack's inequalityMathematicsHarnack inequalitySpacetimeHölder continuityApplied Mathematicsta111010102 general mathematicsLipschitz continuity010101 applied mathematicst)-LaplacianConstant (mathematics)AnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Transition from self tilt to object tilt during maintained lateral tilt in parabolic flight.

1991

Abstract 19 young healthy subjects were subjected to parabolic rollercoaster flight. A horizontal luminous line was seen by the subjects in a headfixed goggle device. During the hypergravic phases of parabolic flight the luminous line seemed to rotate into and during the hypogravic phase against the direction of static head tilt. Ocular counter rotation and activity of the neck position receptors cannot explain these subjective rotations. We conclude that information from the otolith system, converging with visual information within the brain, dislocated the headfixed visual target line. While the retinal image of the luminous line remains unchanged, loading and unloading the otoliths in pa…

Counter rotationgenetic structuresEye MovementsRotationHead tiltParabolic flightPhase (waves)Aerospace EngineeringHypergravityOtolithic MembraneOpticsHumansPhysicsbusiness.industryWeightlessnessHealthy subjectsSpace FlightVestibular Function TestsProprioceptionRetinal imageTilt (optics)Head MovementsLine (geometry)Visual Perceptionsense organsbusinessActa astronautica
researchProduct

A third integrating factor for indefinite integrals of special functions

2020

An integrating factor f ~ x is presented involving the terms in y ′ ′ x and q x y x of the general homogenous second-order linear ordinary differential equation. The new integrating factors obey se...

Differential equationApplied MathematicsLinear ordinary differential equation010102 general mathematicsMathematical analysis010103 numerical & computational mathematicsParabolic cylinder function01 natural sciencesIntegrating factorVDP::Teknologi: 500Special functions0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

Some qualitative properties for the total variation flow

2002

We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…

Dirichlet problemAsymptotic behaviourMathematical analysisGeodetic datumElliptic boundary value problemOperator (computer programming)Dirichlet eigenvaluePropagation of the supportFlow (mathematics)Neumann boundary conditionNonlinear parabolic equationsPoint (geometry)Total variation flowEigenvalue type problemAnalysisMathematics
researchProduct

Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with $L^1$ data

2002

We introduce a new concept of solution for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth. Using Kruzhkov's method of doubling variables both in space and time we prove uniqueness and a comparison principle in $L^1$ for these solutions. To prove the existence we use the nonlinear semigroup theory.

Dirichlet problemNonlinear systemSpacetimeSemigroupGeneral MathematicsMathematical analysisMathematics::Analysis of PDEsUniquenessLinear growthParabolic partial differential equationMathematicsEnergy functionalMathematische Annalen
researchProduct

Nonlinear Diffusion in Transparent Media

2021

Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.

Dirichlet problemflux-saturated diffusion equationsGeneral Mathematicsneumann problemMathematical analysisparabolic equationsBoundary (topology)waiting time phenomenaClassification of discontinuitiesparabolic equations; dirichlet problem; cauchy problem; neumann problem; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; conservation lawsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsNeumann boundary conditionInitial value problemcauchy problemUniquenessdirichlet problemconservation lawsEntropy (arrow of time)entropy solutionsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

Cores for parabolic operators with unbounded coefficients

2009

Abstract Let A = ∑ i , j = 1 N q i j ( s , x ) D i j + ∑ i = 1 N b i ( s , x ) D i be a family of elliptic differential operators with unbounded coefficients defined in R N + 1 . In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G : = A − D s generates a semigroup of positive contractions ( T p ( t ) ) in L p ( R N + 1 , ν ) for every 1 ⩽ p + ∞ , where ν is an infinitesimally invariant measure of ( T p ( t ) ) . Here, under some additional conditions on the growth of the coefficients of A , which cover also some growths with an ex…

Discrete mathematicsSemigroupApplied MathematicsNonautonomous parabolic equationsCharacterization (mathematics)Differential operatorParabolic partial differential equationCombinatoricsOperator (computer programming)Cover (topology)Evolution operatorsGradient estimatesCoresInfinitesimal generatorInvariant measureInvariant measuresAnalysisMathematicsJournal of Differential Equations
researchProduct

High Order Compact Finite Difference Schemes for A Nonlinear Black-Scholes Equation

2001

A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. A new compact scheme, generalizing the compact schemes of Rigal [29], is derived and proved to be unconditionally stable and non-oscillatory. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more efficient than the considered classical schemes.

DiscretizationMathematical analysisFinite differenceFinite difference coefficientBlack–Scholes modelStability (probability)Parabolic partial differential equationNonlinear systemOption pricing transaction costs parabolic equations compact finite difference discretizationsValuation of optionsScheme (mathematics)Applied mathematicsddc:004General Economics Econometrics and FinanceFinanceMathematicsSSRN Electronic Journal
researchProduct

Perimeter symmetrization of some dynamic and stationary equations involving the Monge-Ampère operator

2017

We apply the perimeter symmetrization to a two-dimensional pseudo-parabolic dynamic problem associated to the Monge-Ampere operator as well as to the second order elliptic problem which arises after an implicit time discretization of the dynamical equation. Curiously, the dynamical problem corresponds to a third order operator but becomes a singular second order parabolic equation (involving the 3-Laplacian operator) in the class of radially symmetric convex functions. Using symmetrization techniques some quantitative comparison estimates and several qualitative properties of solutions are given.

DiscretizationMathematical analysisPerimeter symmetrizationPseudoparabolic dynamic Monge-Ampère equationThird orderOperator (computer programming)Dynamic problemSettore MAT/05 - Analisi MatematicaTwo-dimensional domainSymmetrizationOrder (group theory)AmpereConvex functionMathematics
researchProduct

Iconografia e rappresentazione digitale

2017

Questo studio riguarda una ricerca svolta a partire dal 2016 sul tema della valorizzazione della rappresentazione architettonica attraverso una metodologia di lettura del patrimonio che ha messo in evidenza le possibilità offerte dalla modellazione digitale nell'interpretazione dell’iconografia storica, con l’obiettivo di acquisire una maggiore consapevolezza del territorio e del fatto architettonico. Nello specifico la ricerca ha riguardato lo studio dell’iconografia relativa alle cattedrali di Palermo, Monreale e Cefalù che rientrano nell'itinerario Arabo-Normanno dichiarato dall'UNESCO “Patrimonio Mondiale dell’Umanità”. Verrà qui trattato il caso studio di Cefalù con l’obiettivo di most…

Disegno iconografia modellazione digitale itinerario Arabo-Normanno Palermo Monreale CefalùDisegno iconografia modellazione digitale itinerario arabo-normanno Palermo Monreale CefalùDisegnoiconografiamodellazione digitaleMonreale CefalùSettore ICAR/17 - Disegnoitinerario arabo-normannoPalermo
researchProduct