Search results for "Arabo"
showing 10 items of 151 documents
Local regularity for time-dependent tug-of-war games with varying probabilities
2016
We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain H\"older and Harnack estimates. The games have a connection to the normalized $p(x,t)$-parabolic equation $(n+p(x,t))u_t=\Delta u+(p(x,t)-2) \Delta_{\infty}^N u$.
Transition from self tilt to object tilt during maintained lateral tilt in parabolic flight.
1991
Abstract 19 young healthy subjects were subjected to parabolic rollercoaster flight. A horizontal luminous line was seen by the subjects in a headfixed goggle device. During the hypergravic phases of parabolic flight the luminous line seemed to rotate into and during the hypogravic phase against the direction of static head tilt. Ocular counter rotation and activity of the neck position receptors cannot explain these subjective rotations. We conclude that information from the otolith system, converging with visual information within the brain, dislocated the headfixed visual target line. While the retinal image of the luminous line remains unchanged, loading and unloading the otoliths in pa…
A third integrating factor for indefinite integrals of special functions
2020
An integrating factor f ~ x is presented involving the terms in y ′ ′ x and q x y x of the general homogenous second-order linear ordinary differential equation. The new integrating factors obey se...
Some qualitative properties for the total variation flow
2002
We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…
Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with $L^1$ data
2002
We introduce a new concept of solution for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth. Using Kruzhkov's method of doubling variables both in space and time we prove uniqueness and a comparison principle in $L^1$ for these solutions. To prove the existence we use the nonlinear semigroup theory.
Nonlinear Diffusion in Transparent Media
2021
Abstract We consider a prototypical nonlinear parabolic equation whose flux has three distinguished features: it is nonlinear with respect to both the unknown and its gradient, it is homogeneous, and it depends only on the direction of the gradient. For such equation, we obtain existence and uniqueness of entropy solutions to the Dirichlet problem, the homogeneous Neumann problem, and the Cauchy problem. Qualitative properties of solutions, such as finite speed of propagation and the occurrence of waiting-time phenomena, with sharp bounds, are shown. We also discuss the formation of jump discontinuities both at the boundary of the solutions’ support and in the bulk.
Cores for parabolic operators with unbounded coefficients
2009
Abstract Let A = ∑ i , j = 1 N q i j ( s , x ) D i j + ∑ i = 1 N b i ( s , x ) D i be a family of elliptic differential operators with unbounded coefficients defined in R N + 1 . In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G : = A − D s generates a semigroup of positive contractions ( T p ( t ) ) in L p ( R N + 1 , ν ) for every 1 ⩽ p + ∞ , where ν is an infinitesimally invariant measure of ( T p ( t ) ) . Here, under some additional conditions on the growth of the coefficients of A , which cover also some growths with an ex…
High Order Compact Finite Difference Schemes for A Nonlinear Black-Scholes Equation
2001
A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. A new compact scheme, generalizing the compact schemes of Rigal [29], is derived and proved to be unconditionally stable and non-oscillatory. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more efficient than the considered classical schemes.
Perimeter symmetrization of some dynamic and stationary equations involving the Monge-Ampère operator
2017
We apply the perimeter symmetrization to a two-dimensional pseudo-parabolic dynamic problem associated to the Monge-Ampere operator as well as to the second order elliptic problem which arises after an implicit time discretization of the dynamical equation. Curiously, the dynamical problem corresponds to a third order operator but becomes a singular second order parabolic equation (involving the 3-Laplacian operator) in the class of radially symmetric convex functions. Using symmetrization techniques some quantitative comparison estimates and several qualitative properties of solutions are given.
Iconografia e rappresentazione digitale
2017
Questo studio riguarda una ricerca svolta a partire dal 2016 sul tema della valorizzazione della rappresentazione architettonica attraverso una metodologia di lettura del patrimonio che ha messo in evidenza le possibilità offerte dalla modellazione digitale nell'interpretazione dell’iconografia storica, con l’obiettivo di acquisire una maggiore consapevolezza del territorio e del fatto architettonico. Nello specifico la ricerca ha riguardato lo studio dell’iconografia relativa alle cattedrali di Palermo, Monreale e Cefalù che rientrano nell'itinerario Arabo-Normanno dichiarato dall'UNESCO “Patrimonio Mondiale dell’Umanità”. Verrà qui trattato il caso studio di Cefalù con l’obiettivo di most…