Search results for "Arama"

showing 10 items of 903 documents

Large Zero-Field Cooled Exchange-Bias in BulkMn2PtGa

2013

We report a large exchange-bias (EB) effect after zero-field cooling the new tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The first-principle calculation and the magnetic measurements reveal that Mn2PtGa orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that ferrimagnetic (FI) ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled (ZFC) EB during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field induced irreversible magnetic behavior and a spin-glass-like phase. The field induced irreversibility originates from an unusual…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceMagnetic domainCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyHeusler compound01 natural sciencesCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyMagnetizationExchange biasFerrimagnetism0103 physical sciencesengineeringAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review Letters
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

A review on LiNixCo1−2xMnxO2 (0.1 ≤ x ≤ 0.33) cathode materials for rechargeable Li-ion batteries

2021

Abstract Electrochemical and physical properties of LiNixCo1−2xMnxO2 (0.1 ≤ x ≤ 0.33) electrode materials prepared by self-combustion were investigated. Pure LiNixCo1−2xMnxO2 (x = 0.1, 0.2, 0.33) materials with single phase and R-3 m layered structure were obtained as confirmed by X-ray diffraction. Energy Dispersive Spectroscopy, Scanning Electron Microscopy are commonly used to determine the chemical composition and the distribution of particle size of the three samples. The electrochemical performances of the samples were measured at different current rates in the 3–4.5 V potential range. The studied materials exhibit good discharge capacity. The magnetic susceptibility measurements and …

010302 applied physicsMaterials scienceAnalytical chemistryEnergy-dispersive X-ray spectroscopyFonts d'energia02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibilityCathodeIonlaw.inventionElectroquímicaParamagnetismlaw0103 physical sciencesDiamagnetism0210 nano-technologySpectroscopyElectron paramagnetic resonanceMaterials
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

EPR in glass ceramics

2019

Abstract The development of novel materials requires a profound understanding of the relationship between a material's performance and its structural properties. Electron paramagnetic resonance (EPR) is a well-established technique for a direct detection and identification of paramagnetic defects in solids. This chapter provides an overview of the applicability of continuous wave EPR spectroscopy in the studies of glass ceramics focusing on transition metal (Mn2 +, Cu2 +, Cr3 +) and rare earth (Gd3 +, Eu2 +, Er3 +, Yb3 +) ion local structure analysis. EPR spectra features of the above-mentioned paramagnetic probes in glasses and glass ceramics are compared and discussed in detail. The chapt…

010302 applied physicsMaterials scienceGlass-ceramic02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineIonlaw.inventionParamagnetismTransition metallawvisual_art0103 physical sciencesvisual_art.visual_art_mediumContinuous wavePhysical chemistryCeramic0210 nano-technologyElectron paramagnetic resonance
researchProduct

Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

2019

Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …

010302 applied physicsMaterials sciencePrecipitation (chemistry)Scanning electron microscopeDopingInfrared spectroscopy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonlaw.inventionlaw0103 physical sciencesMaterials ChemistryCeramics and CompositesFourier transform infrared spectroscopyInductively coupled plasma0210 nano-technologyElectron paramagnetic resonanceNuclear chemistryJournal of the European Ceramic Society
researchProduct

Crystalline phase detection in glass ceramics by EPR spectroscopy

2018

The advances of EPR spectroscopy for the detection of activators as well as determining their local structure in the crystalline phase of glass ceramics is considered. The feasibility of d-element (Mn2+, Cu2+) and f-element (Gd3+, Eu2+) ion probes for the investigation of glass ceramics is discussed. In the case of Mn2+, the information is obtained from the EPR spectrum superhyperfine structure, for Gd3+ and Eu2+ probes – from the EPR spectrum fine structure, whereas for Cu2+ ions the changes in the EPR spectrum shape could be useful. The examples of EPR spectra of the above-mentioned probes in oxyfluoride glass ceramics are illustrated. ----/ / /---- This is the preprint version of the fol…

010302 applied physicsMaterials scienceglass ceramicsPhysics and Astronomy (miscellaneous)Динамика кристаллической решеткиGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal structureSpectral lineIonlaw.inventionelectron paramagnetic resonancelawparamagnetic ionsPhase (matter)visual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]Physical chemistryCeramic0210 nano-technologyElectron paramagnetic resonanceLow Temperature Physics
researchProduct

Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).

010302 applied physicsMultidisciplinaryMaterials scienceMagnetic momentMagnetic structurelcsh:Rlcsh:MedicineFormal charge02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionIonBond lengthlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theorylcsh:Q0210 nano-technologyElectron paramagnetic resonanceGround statelcsh:ScienceScientific Reports
researchProduct

Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals

2018

Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Astrophysics::High Energy Astrophysical Phenomenachemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials ScienceCrystallographyParamagnetismchemistrylawAluminiumVacancy defect0103 physical sciencesNeutronIrradiation0210 nano-technologyElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

EPR and optical spectroscopy of neutron-irradiated Gd3Ga5O12 single crystals

2020

Abstract In this paper, we have performed comparative analysis of EPR, optical absorption (OA) and luminescence spectra for a series of Gd3Ga5O12 (GGG) single crystals irradiated with fast neutrons with fluencies varied from 1016 to 1020n/cm2. In a crystal irradiated with the maximum neutron fluence, the EPR spectra demonstrated the formation of several paramagnetic defects. In particular, EPR spectrum shows a strong resonance at (effective) g ≈ 1.4 with practically isotropic behavior in the crystal rotation around the [1 1 1] direction (magnetic field being perpendicular to [1 1 1]) and several weaker lines in the g ≈ 1.1–2.6 region, which show more pronounced angular dependences. While th…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhotoluminescenceResonance02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsNeutron temperaturelaw.inventionCrystalParamagnetismlaw0103 physical sciences0210 nano-technologySpectroscopyLuminescenceElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct