Search results for "Argonaute Proteins"

showing 4 items of 14 documents

Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila

2009

RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs1-6. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation(7-10). However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) a…

Ribonuclease IIIanimal structuresRNA-induced transcriptional silencingTranscription GeneticRNA-induced silencing complexBiology03 medical and health sciences0302 clinical medicineRNA interferenceTranscriptional regulationAnimalsDrosophila ProteinsHSP70 Heat-Shock ProteinsPromoter Regions Genetic030304 developmental biologyRNA Double-StrandedGenetics0303 health sciencesMultidisciplinaryfungiRNARNA-Binding ProteinsChromatinChromatinRNA silencingMicroRNAsDrosophila melanogasterGene Expression RegulationArgonaute ProteinsRNA InterferenceRNA Polymerase II030217 neurology & neurosurgeryDrosophila ProteinHeat-Shock ResponseRNA HelicasesProtein BindingTranscription Factors
researchProduct

Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo

2020

Abstract In Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG‐1‐bound 21U RNAs trigger silencing mechanisms mediated by RNA‐dependent RNA polymerase (RdRP)‐synthetized 22G RNAs. This silencing can become PRG‐1‐independent and heritable over many generations, a state termed RNA‐induced epigenetic gene silencing (RNAe). How and when RNAe is established, and how it is maintained, is not known. We show that maternally provided 21U RNAs can be sufficient for triggering RNAe in embryos. Additionally, we identify PID‐2, a protein containing intrinsically disordered regions (IDRs), as a factor required …

Small RNAPiwi-interacting RNApiRNABiologyGeneral Biochemistry Genetics and Molecular BiologyArticleEpigenesis Genetic570 Life sciences03 medical and health scienceschemistry.chemical_compound0302 clinical medicineProtein DomainsRNA polymeraseGene silencingAnimalsEpigeneticsGene SilencingRNA Small InterferingPID‐5Caenorhabditis elegansCaenorhabditis elegans ProteinsMolecular BiologyPID‐4Caenorhabditis elegans030304 developmental biologyPID‐2Regulation of gene expression0303 health sciencesGeneral Immunology and MicrobiologyGeneral NeuroscienceRNAGene Expression Regulation DevelopmentalArticlesbiology.organism_classificationRNA BiologyCell biologyIntrinsically Disordered ProteinschemistryArgonaute ProteinsZ granuleDevelopment & Differentiation030217 neurology & neurosurgeryProtein Binding570 Biowissenschaften
researchProduct

Protease-mediated processing of Argonaute proteins controls small RNA association

2020

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a cha…

Transposable elementSmall RNAanimal structuresDNA damageBiologyDipeptidyl peptidaseSubstrate Specificity03 medical and health sciences0302 clinical medicineAnimalsGene silencingRNA MessengerRNA Small InterferingCaenorhabditis elegansCaenorhabditis elegans ProteinsDipeptidyl-Peptidases and Tripeptidyl-PeptidasesMolecular BiologyGeneCaenorhabditis elegans030304 developmental biology0303 health sciencesWild typeRNACell BiologyArgonautebiology.organism_classificationCell biologyFertilityArgonaute ProteinsProteolysisRNA HelminthProtein Processing Post-Translational030217 neurology & neurosurgery
researchProduct

piRNAclusterDB 2.0: update and expansion of the piRNA cluster database.

2021

Abstract PIWI-interacting RNAs (piRNAs) and their partnering PIWI proteins defend the animal germline against transposable elements and play a crucial role in fertility. Numerous studies in the past have uncovered many additional functions of the piRNA pathway, including gene regulation, anti-viral defense, and somatic transposon repression. Further, comparative analyses across phylogenetic groups showed that the PIWI/piRNA system evolves rapidly and exhibits great evolutionary plasticity. However, the presence of so-called piRNA clusters as the major source of piRNAs is common to nearly all metazoan species. These genomic piRNA-producing loci are highly divergent across taxa and critically…

Transposable elementSmall RNAendocrine systemAcademicSubjects/SCI00010Sequencing dataPiwi-interacting RNADatasets as TopicBiologycomputer.software_genreGermlineEvolution Molecular03 medical and health sciences0302 clinical medicineDatabases GeneticGeneticsAnimalsCluster AnalysisHumansDatabase IssueRNA Small InterferingPhylogeny030304 developmental biologyRegulation of gene expression0303 health sciencesInternetGenomePhylogenetic treeDatabaseurogenital systemGenetic LociArgonaute ProteinsDNA Transposable Elementscomputer030217 neurology & neurosurgerySoftwareNucleic acids research
researchProduct