Search results for "Artificial neural network"

showing 10 items of 694 documents

Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.

2003

Abstract The command and control of limb movements by the cerebellar and reflex pathways are modeled by means of a circuit whose structure is deduced from functional constraints. One constraint is that fast limb movements must be accurate although they cannot be continuously controlled in closed loop by use of sensory signals. Thus, the pathways which process the motor orders must contain approximate inverse functions of the bio-mechanical functions of the limb and of the muscles. This can be achieved by means of parallel feedback loops, whose pattern turns out to be comparable to the anatomy of the cerebellar pathways. They contain neural networks able to anticipate the motor consequences …

CerebellumEfferentMovementModels NeurologicalSensory systemOlivary NucleusCerebellar CortexArtificial IntelligenceCerebellumNeural PathwaysReflexmedicineSet (psychology)Muscle SkeletalRed NucleusMotor NeuronsNeuronsArtificial neural networkGeneral NeuroscienceSupervised learningExtremitiesBiomechanical Phenomenamedicine.anatomical_structureMemory Short-TermCerebellar NucleiCerebellar cortexReflexNeural Networks ComputerPsychologyNeuroscienceAlgorithmsMuscle ContractionNeuroscience
researchProduct

Cerebellar learning of bio-mechanical functions of extra-ocular muscles: modeling by artificial neural networks

2003

A control circuit is proposed to model the command of saccadic eye movements. Its wiring is deduced from a mathematical constraint, i.e. the necessity, for motor orders processing, to compute an approximate inverse function of the bio-mechanical function of the moving plant, here the bio-mechanics of the eye. This wiring is comparable to the anatomy of the cerebellar pathways. A predicting element, necessary for inversion and thus for movement accuracy, is modeled by an artificial neural network whose structure, deduced from physical constraints expressing the mechanics of the eye, is similar to the cell connectivity of the cerebellar cortex. Its functioning is set by supervised reinforceme…

CerebellumEye MovementsArtificial neural networkbusiness.industryGeneral NeuroscienceMotor controlEye movementPattern recognitionSaccadic maskingBiomechanical Phenomenamedicine.anatomical_structureOculomotor MusclesCerebellumCerebellar cortexMotor systemmedicineLearningReinforcement learningNeural Networks ComputerArtificial intelligencebusinessNeuroscienceMathematicsNeuroscience
researchProduct

Improving the accuracy of rainfall prediction using a regionalization approach and neural networks

2018

Spatial and temporal analysis of precipitation patterns has become an intense research topic in contemporary climatology. Increasing the accuracy of precipitation prediction can have valuable results for decision-makers in a specific region. Hence, studies about precipitation prediction on a regional scale are of great importance. Artificial Neural Networks (ANN) have been widely used in climatological applications to predict different meteorological parameters. In this study, a method is presented to increase the accuracy of neural networks in precipitation prediction in Chaharmahal and Bakhtiari Province in Iran. For this purpose, monthly precipitation data recorded at 42 rain gauges duri…

Chaharmahal and Bakhtiari ProvinceCluster Analysis (CA)Settore GEO/04 - Geografia Fisica E GeomorfologiaArtificial Neural Networks (ANN)precipitation
researchProduct

Adversarial reverse mapping of equilibrated condensed-phase molecular structures

2020

A tight and consistent link between resolutions is crucial to further expand the impact of multiscale modeling for complex materials. We herein tackle the generation of condensed molecular structures as a refinement -- backmapping -- of a coarse-grained structure. Traditional schemes start from a rough coarse-to-fine mapping and perform further energy minimization and molecular dynamics simulations to equilibrate the system. In this study we introduce DeepBackmap: A deep neural network based approach to directly predict equilibrated molecular structures for condensed-phase systems. We use generative adversarial networks to learn the Boltzmann distribution from training data and realize reve…

Chemical Physics (physics.chem-ph)Structure (mathematical logic)Artificial neural networkComputer sciencePhase (waves)FOS: Physical sciencesLink (geometry)Condensed Matter - Soft Condensed MatterComputational Physics (physics.comp-ph)Energy minimizationMultiscale modelingBoltzmann distributionHuman-Computer InteractionMolecular dynamicsArtificial IntelligencePhysics - Chemical PhysicsSoft Condensed Matter (cond-mat.soft)Physics - Computational PhysicsAlgorithmSoftwareMachine Learning: Science and Technology
researchProduct

Artificial neural network for quantitative determination of total protein in yogurt by infrared spectrometry

2009

Abstract A method has been introduced for quantitative determination of protein content in yogurt samples based on the characteristic absorbance of protein in 1800–1500 cm− 1 spectral region by mid-FTIR spectroscopy and chemometrics. Successive Projection Algorithm (SPA) wavelength selection procedure, coupled with feed forward Back-Propagation Artificial Neural Network (BP-ANN) model was the benefited chemometric technique. Relative Error of Prediction (REP) in BP-ANN and SPA-BP-ANN methods for training set was 7.25 and 3.70 respectively. Considering the complexity of the sample, the ANN model was found to be reliable, while the proposed method is rapid and simple, without any sample prepa…

ChemometricsAbsorbanceChromatographyArtificial neural networkChemistryApproximation errorSample preparationBiological systemQuantitative analysis (chemistry)SpectroscopyBackpropagationDykstra's projection algorithmAnalytical ChemistryMicrochemical Journal
researchProduct

Stochastic models for wind speed forecasting

2011

Abstract This paper is concerned with the problem of developing a general class of stochastic models for hourly average wind speed time series. The proposed approach has been applied to the time series recorded during 4 years in two sites of Sicily, a region of Italy, and it has attained valuable results in terms both of modelling and forecasting. Moreover, the 24 h predictions obtained employing only 1-month time series are quite similar to those provided by a feed-forward artificial neural network trained on 2 years data.

Class (computer programming)EngineeringSeries (mathematics)Artificial neural networkMeteorologyRenewable Energy Sustainability and the EnvironmentStochastic modellingbusiness.industryModel selectionSettore FIS/01 - Fisica SperimentaleEnergy Engineering and Power TechnologySettore FIS/03 - Fisica Della MateriaSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Wind speedFuel TechnologyNuclear Energy and EngineeringSpectral analysisbusinessstochastic models time series model selection spectral analysis artificial neural networks wind forecastingAlgorithmEnergy Conversion and Management
researchProduct

Improvement of Temperature Based ANN Models for ETo Prediction in Coastal Locations by Means of Preliminary Models and Exogenous Data

2008

This paper reports the application of artificial neural networks for estimating reference evapotranspiration (ETo) as a function of local maximum and minimum air temperatures and exogenous relative humidity and evapotranspiration in twelve coastal locations of the autonomous Valencia region, Spain. The Penman-Monteith model for ETo prediction, as been proposed by the Food and Agriculture Organization of the United Nations (FAO) as the standard method for ETo forecast, has been used to provide the ANN targets. The number of stations where reliable climatic data are available for the application of the Penman-Monteith equation is limited. Thus, the development of more precise predicting tools…

Climatic dataMeteorologyArtificial neural networkEvapotranspirationClimatic variablesEnvironmental scienceAtmospheric modelPenman–Monteith equationData modeling2008 Eighth International Conference on Hybrid Intelligent Systems
researchProduct

The on-line curvilinear component analysis (onCCA) for real-time data reduction

2015

Real time pattern recognition applications often deal with high dimensional data, which require a data reduction step which is only performed offline. However, this loses the possibility of adaption to a changing environment. This is also true for other applications different from pattern recognition, like data visualization for input inspection. Only linear projections, like the principal component analysis, can work in real time by using iterative algorithms while all known nonlinear techniques cannot be implemented in such a way and actually always work on the whole database at each epoch. Among these nonlinear tools, the Curvilinear Component Analysis (CCA), which is a non-convex techni…

Clustering high-dimensional dataBregman divergenceComputer scienceneural networkprojectionBregman divergenceNovelty detectionSynthetic dataData visualizationArtificial Intelligencebranch and boundComputer visionunfoldingcurvilinear component analysisCurvilinear coordinatesArtificial neural networkbusiness.industryVector quantizationPattern recognitiononline algorithmbearing faultvector quantizationPattern recognition (psychology)Principal component analysisbearing fault; branch and bound; Bregman divergence; curvilinear component analysis; data reduction; neural network; novelty detection; online algorithm; projection; unfolding; vector quantization; Software; Artificial Intelligencedata reductionArtificial intelligencebusinessnovelty detectionSoftware
researchProduct

Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks

2020

In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basin…

Coefficient of determinationArtificial neural networkRemote sensing applicationvesien tilaspektrikuvausHyperspectral imagingneuroverkotvedenlaatuConvolutional neural networkwater qualityPearson product-moment correlation coefficientsymbols.namesakeremote sensinghyperspectralilmakuvakartoitusMultilayer perceptronconvolutional neural networkssymbolsEnvironmental scienceWater qualitykaukokartoitusRemote sensing
researchProduct

Neural networks with non-uniform embedding and explicit validation phase to assess Granger causality

2015

A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments perfo…

Cognitive NeuroscienceEntropyFOS: Physical sciencesOverfittingcomputer.software_genreMachine learningGranger causalityArtificial IntelligenceMedicine and Health SciencesEntropy (information theory)Non-uniform embeddingComputer SimulationMathematicsArtificial neural networkbusiness.industryProbability and statisticsModels TheoreticalNeural Networks (Computer)ClassificationNeural networkAlgorithmCausalityPhysics - Data Analysis Statistics and ProbabilitySettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityEmbeddingA priori and a posterioriTransfer entropyNeural Networks ComputerArtificial intelligenceData miningbusinesscomputerAlgorithmsNeural networksData Analysis Statistics and Probability (physics.data-an)
researchProduct