Search results for "Artificial"
showing 10 items of 7394 documents
Adaptive control of uncertain nonlinear systems with quantized input signal
2018
Abstract This paper proposes new adaptive controllers for uncertain nonlinear systems in the presence of input quantization. The control signal is quantized by a class of sector-bounded quantizers including the uniform quantizer, the logarithmic quantizer and the hysteresis quantizer. To clearly illustrate our approaches, we will start with a class of single-loop nonlinear systems and then extend the results to multi-loop interconnected nonlinear systems. By using backstepping technique, a new adaptive control algorithm is developed by constructing a new compensation method for the effects of the input quantization. A hyperbolic tangent function is introduced in the controller with a new tr…
Comparison of Model-Based Simultaneous Position and Stiffness Control Techniques for Pneumatic Soft Robots
2020
Soft robots have been extensively studied for their ability to provide both good performance and safe human-robot interaction. In this paper, we present and compare the performance of two model-based control techniques with the common aim to independently and simultaneously control position and stiffness of a pneumatic soft robot’s joint. The dynamic system of a robot arm with flexible joints actuated by a pneumatic antagonistic pair of actuators, so-called McKibben artificial muscles, will be regarded, while its dynamic parameters will be considered imprecise. Simulation results are provided to verify the performance of the algorithms.
Adaptive Control of Quantized Uncertain Nonlinear Systems
2017
Abstract This paper proposes a new adaptive controller for uncertain nonlinear systems in presence of quantized input signal and unknown external disturbance. A hysteresis quantizer is incorporated to reduce chattering phenomenon. By proposing a new transformation of the final control signal, using the sector-bound property of the quantizer and introducing a hyperbolic tangent function, the effects from input quantization and external disturbance are effectively compensated and the Lipschitz condition required for the nonlinear functions in the systems is removed. Besides showing global stability, tracking error performance is also established and can be adjusted by tuning certain design pa…
Making Industrial Robots Smarter with Adaptive Reasoning and Autonomous Thinking for Real-Time Tasks in Dynamic Environments: A Case Study
2018
In order to extend the abilities of current robots in industrial applications towards more autonomous and flexible manufacturing, this work presents an integrated system comprising real-time sensing, path-planning and control of industrial robots to provide them with adaptive reasoning, autonomous thinking and environment interaction under dynamic and challenging conditions. The developed system consists of an intelligent motion planner for a 6 degrees-of-freedom robotic manipulator, which performs pick-and-place tasks according to an optimized path computed in real-time while avoiding a moving obstacle in the workspace. This moving obstacle is tracked by a sensing strategy based on ma-chin…
UJI RobInLab's approach to the Amazon Robotics Challenge 2017
2017
This paper describes the approach taken by the team from the Robotic Intelligence Laboratory at Jaume I University to the Amazon Robotics Challenge 2017. The goal of the challenge is to automate pick and place operations in unstructured environments, specifically the shelves in an Amazon warehouse. RobInLab's approach is based on a Baxter Research robot and a customized storage system. The system's modular architecture, based on ROS, allows communication between two computers, two Arduinos and the Baxter. It integrates 9 hardware components along with 10 different algorithms to accomplish the pick and stow tasks. We describe the main components and pipelines of the system, along with some e…
Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection
2015
This volume presents the papers that have been accepted for the 2015 special sessions of the 13th International Conference on Practical Applications of Agents and Multi-Agent Systems, held at University of Salamanca, Spain, at 3rd-5th June, 2015: Agents Behaviours and Artificial Markets (ABAM); Agents and Mobile Devices (AM); Multi-Agent Systems and Ambient Intelligence (MASMAI); Web Mining and Recommender systems (WebMiRes); Learning, Agents and Formal Languages (LAFLang); Agent-based Modeling of Sustainable Behavior and Green Economies (AMSBGE); Emotional Software Agents (SSESA) and Intelligent Educational Systems (SSIES). The volume also includes the paper accepted for the Doctoral Conso…
Adaptive Robot Control – An Experimental Comparison
2012
This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with…
Surrogate models for the compressive strength mapping of cement mortar materials
2021
Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method available in the literature, which can reliably predict their strength based on the mix components. This limitation is attributed to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques for predicting the compressive strength of mortars is investigated. Specifically, Levenberg–Marquardt, biogeography-based optimization, and invasive weed optimization algorithms are used for this purpose (based on experimental data available in the literature). The c…
Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment
2012
International audience; Rotation estimation is a fundamental step for various robotic applications such as automatic control of ground/aerial vehicles, motion estimation and 3D reconstruction. However it is now well established that traditional navigation equipments, such as global positioning systems (GPSs) or inertial measurement units (IMUs), suffer from several disadvantages. Hence, some vision-based works have been proposed recently. Whereas interesting results can be obtained, the existing methods have non-negligible limitations such as a difficult feature matching (e.g. repeated textures, blur or illumination changes) and a high computational cost (e.g. analyze in the frequency domai…
Towards the Design of Robotic Drivers for Full-Scale Self-Driving Racing Cars
2019
Autonomous vehicles are undergoing a rapid development thanks to advances in perception, planning and control methods and technologies achieved in the last two decades. Moreover, the lowering costs of sensors and computing platforms are attracting industrial entities, empowering the integration and development of innovative solutions for civilian use. Still, the development of autonomous racing cars has been confined mainly to laboratory studies and small to middle scale vehicles. This paper tackles the development of a planning and control framework for an electric full scale autonomous racing car, which is an absolute novelty in the literature, upon which we report our preliminary experim…