Search results for "Astronomy"

showing 10 items of 11180 documents

A graphene-based neutral particle detector

2019

A neutral particle detector is presented, in which the traditionally used target material, indium tin oxide (ITO), is replaced by graphene. The graphene-based detector enables collinear photodetachment measurements at a significantly shorter wavelength of light down to 230 nm compared to ITO-based detectors, which are limited at 335 nm. Moreover, the background signal from the photoelectric effect is drastically reduced when using graphene. The graphene based detector, reaching 1.7 eV further into the UV energy range, allows increased possibilities for photodetachment studies of negatively charged atoms, molecules, and clusters.A neutral particle detector is presented, in which the traditio…

010302 applied physicsRange (particle radiation)Materials sciencePhysics and Astronomy (miscellaneous)business.industryGrapheneDetector02 engineering and technologyPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesSignallaw.inventionIndium tin oxideWavelengthlaw0103 physical sciencesOptoelectronics0210 nano-technologybusinessNeutral particleApplied Physics Letters
researchProduct

Negative differential resistance and threshold-switching in conical nanopores with KF solutions

2021

Negative differential resistance (NDR) phenomena are under-explored in nanostructures operating in the liquid state. We characterize experimentally the NDR and threshold switching phenomena observed when conical nanopores are immersed in two identical KF solutions at low concentration. Sharp current drops in the nA range are obtained for applied voltages exceeding thresholds close to 1 V and a wide frequency window, which suggests that the threshold switching can be used to amplify small electrical perturbations because a small change in voltage typically results in a large change in current. While we have not given a detailed physical mechanism here, a phenomenological model is also includ…

010302 applied physicsRange (particle radiation)NanostructureMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physics02 engineering and technologyConical surface021001 nanoscience & nanotechnology01 natural sciencesNanopore0103 physical sciencesPhenomenological modelCurrent (fluid)Differential (infinitesimal)0210 nano-technologyVoltageApplied Physics Letters
researchProduct

Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy

2019

The low-frequency noise in a nanometer-sized virtual memristor consisting of a contact of a conductive atomic force microscope (CAFM) probe to an yttria stabilized zirconia (YSZ) thin film deposited on a conductive substrate is investigated. YSZ is a promising material for the memristor application since it is featured by high oxygen ion mobility, and the oxygen vacancy concentration in YSZ can be controlled by varying the molar fraction of the stabilizing yttrium oxide. Due to the low diameter of the CAFM probe contact to the YSZ film (similar to 10nm), we are able to measure the electric current flowing through an individual filament both in the low resistive state (LRS) and in the high r…

010302 applied physicsResistive touchscreenMaterials sciencePhysics and Astronomy (miscellaneous)business.industryMemristor Noise induced phenomenaOxide02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesNoise (electronics)chemistry.chemical_compoundchemistry0103 physical sciencesOptoelectronicsFlicker noiseThin filmElectric current0210 nano-technologybusinessYttria-stabilized zirconia
researchProduct

Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

2017

To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI s…

010302 applied physicsSpintronicsCondensed matter physicsChemistryPhononGeneral Physics and AstronomySilicon on insulator02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesStability (probability)Structural stability0103 physical sciencesOrbit (dynamics)0210 nano-technologyElectronic band structureSpin-½Journal of Applied Physics
researchProduct

High transparency Bi 2 Se 3 topological insulator nanoribbon Josephson junctions with low resistive noise properties

2019

Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapour Deposition, have been used to fabricate high quality Josephson junctions with Al superconducting electrodes. The conductance spectra (dI/dV) of the junctions show clear dip-peak structures characteristic of multiple Andreev reflections. The temperature dependence of the dip-peak features reveals a highly transparent Al/Bi$_2$Se$_3$ topological insulator nanoribbon interface and Josephson junction barrier. This is supported by the high values of the Bi$_2$Se$_3$ induced gap and of I$_c$R$_n$ (I$_c$ critical current, R$_n$ normal resistance of the junction) product both of the order of 160 $\mu$eV, a value close to the Al gap. T…

010302 applied physicsSuperconductivityJosephson effectResistive touchscreenMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsCondensed Matter - SuperconductivityConductanceFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNoise (electronics)Superconductivity (cond-mat.supr-con)Physical vapor depositionTopological insulator0103 physical sciencesCooper pair0210 nano-technologyApplied Physics Letters
researchProduct

Broadband Ultrahigh-Resolution Spectroscopy of Particle-Induced X Rays: Extending the Limits of Nondestructive Analysis

2016

Nondestructive analysis (NDA) based on x-ray emission is widely used, for example, in the semiconductor and concrete industries. Here, we demonstrate significant quantitative and qualitative improvements in broadband x-ray NDA by combining particle-induced emission with detection based on superconducting microcalorimeter arrays. We show that the technique offers great promise in the elemental analysis of thin-film and bulk samples, especially in the difficult cases where tens of different elements with nearly overlapping emission lines have to be identified down to trace concentrations. We demonstrate the efficiency and resolving capabilities by spectroscopy of several complex multielement …

010302 applied physicsSuperconductivityPhysicsspectroscopyta114nondestructive analysisspektroskopiaNondestructive analysisGeneral Physics and Astronomyx-rays01 natural sciencesImaging phantomTheoretical physicsUltrahigh resolution0103 physical sciencesParticleAtomic physics010306 general physicsSpectroscopyPhysical Review Applied
researchProduct

Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: effect of thermal annealing

2013

International audience; ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.

010302 applied physicsTelecomunicacionesPhotoluminescenceMaterials sciencePhysics and Astronomy (miscellaneous)Annealing (metallurgy)business.industryWide-bandgap semiconductorNanowire02 engineering and technology021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesHomogeneous distributionRadiative efficiency0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusinessWurtzite crystal structure
researchProduct

Spectroscopic study of the electric field induced valence change of Fe-defect centers in SrTiO(3)

2011

The electrochemical changes induced by an electric field in Fe-doped SrTiO(3) have been investigated by X-ray absorption spectroscopy (XANES and EXAFS), electron paramagnetic resonance (EPR) and Raman spectroscopy. A detailed study of the Fe dopant in the regions around the anode and cathode reveals new insights into the local structure and valence state of Fe in SrTiO(3) single crystals. The ab initio full multiple-scattering XANES calculations give an evidence of the oxygen vacancy presence in the first coordination shell of iron. Differences in the length and disorder of the Fe-O bonds as extracted from EXAFS are correlated to the unequivocal identification of the defect type by compleme…

010302 applied physicsValence (chemistry)Absorption spectroscopyExtended X-ray absorption fine structureChemistryAb initioGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesXANESlaw.inventionJsymbols.namesakeCrystallographyOxidation statelaw0103 physical sciencesddc:540symbolsPhysical and Theoretical Chemistry0210 nano-technologyElectron paramagnetic resonanceRaman spectroscopy
researchProduct

A new technique for partial discharges measurement under DC periodic stress

2017

The aim of the present work is to recognize the type of defect in insulating materials employed in DC electrical systems. This analysis, under AC stress, is carried out by using the Phase Resolved method (PRPD). While, under constant voltage stress this method cannot be performed and measurements show complexities. In order to overcome these problems, a new technique is proposed, based on the application of a periodic continuous waveform. Simulation results, carried out by using a model based on a time-variable conductance of an air void defect, showed the PRPD pattern that can be obtain. Furthermore, compared to the constant DC stress, the measurement duration became lower and the discharg…

010302 applied physicsVoid (astronomy)Materials scienceHVDCElectronic Optical and Magnetic MaterialConductanceStress measurementMechanicsDC stre01 natural sciencesSpace chargeSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaPartial discharge0103 physical sciencesWaveformConstant voltagePRPD patternElectrical and Electronic Engineering010306 general physics
researchProduct

Acoustic Wave Behavior in a Specimen Containing an Air Void Defect

2019

The PEA method is the most used technique for the space charge measurements. As is well known, this method uses pressure waves to detect the charges accumulated in solid dielectrics. Based on its working principle, the generated acoustic waves travel within PEA cell and the specimen under test in order to be finally detected by the piezoelectric sensor. For a multilayer specimen and, in particular, in case of different materials that make up the specimen, the acoustic wave reflection is inevitable. Considering that, in several cases, the reflected waves could be detected by the piezoelectric sensor before than the main signals, the PEA cell output profile could results distorted. Based on t…

010302 applied physicsVoid (astronomy)Materials sciencePiezoelectric sensorPEA method020209 energyAcousticsReflected wavesair void02 engineering and technologyAcoustic waveDielectric01 natural sciencesSpace chargeSpace chargeKaptonreflection phenomenonSettore ING-IND/31 - ElettrotecnicaMultilayer specimen0103 physical sciences0202 electrical engineering electronic engineering information engineering
researchProduct