Search results for "Ataxia"

showing 10 items of 150 documents

New insights in the neurological phenotype of aceruloplasminemia in Caucasian patients

2017

Abstract Introduction The diagnosis aceruloplasminemia is usually made in patients with advanced neurological manifestations of the disease. In these patients prognosis is poor, disabilities are severe and patients often die young. The aim of our study was to facilitate recognition of aceruloplasminemia at a disease stage at which treatment can positively influence outcome. Currently, the neurological phenotype of aceruloplasminemia has been mainly described in Japanese patients. This ‘classical’ phenotype consists of cerebellar ataxia, hyperkinetic movement disorders and cognitive decline. In this study we describe the spectrum of neurological disease in Caucasian patients. Methods Data on…

0301 basic medicineAdultMalemedicine.medical_specialtyPediatricsAtaxiaMovement disordersBiologyWhite People03 medical and health sciencesNeurological manifestation0302 clinical medicinePhenotypic variabilitymedicineAceruloplasminemiaHumansCognitive declineAceruloplasminemiaPsychiatryDystoniaCerebellar ataxiaParkinsonismCeruloplasminChoreaNeurodegenerative DiseasesMiddle Agedmedicine.diseaseIron Metabolism DisordersPedigree030104 developmental biologyPsychiatric changesPhenotypeNeurologyFemaleNeurology (clinical)Geriatrics and Gerontologymedicine.symptomNervous System DiseasesSettore M-EDF/01 - Metodi E Didattiche Delle Attivita' Motorie030217 neurology & neurosurgeryFollow-Up Studies
researchProduct

Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications

2021

Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance betweenin situbiosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models,…

0301 basic medicineAgingCognitive Neuroscience24-hydroxycholesterolbrain[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyCentral nervous systemNeurosciences. Biological psychiatry. NeuropsychiatryReview03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineneurodegenerative diseasesAmyotrophic lateral sclerosisLipid raftlipid raftsbiologyCholesterolbusiness.industryphosphorylation[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyCytochrome P450cholesterolmedicine.diseaseplasma membranes3. Good healthVesicular transport proteinCYP46A1030104 developmental biologymedicine.anatomical_structurechemistrySpinocerebellar ataxiabiology.proteinAnimal studiesbusinessNeuroscience030217 neurology & neurosurgeryNeuroscienceRC321-571
researchProduct

PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia

2020

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…

0301 basic medicineAtaxiaCell SurvivalCaspase 3PPAR agonistlcsh:RC321-57103 medical and health sciencesMice0302 clinical medicineIron-Binding ProteinsmedicineNeuritesAnimalsHumansMyocytes CardiacNeurodegenerationDorsal root ganglia neuronslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMembrane Potential MitochondrialNeuronsCardiomyocytesbiologyChemistryFrataxinNeurodegenerationCalpainLipid DropletsPeroxisomemedicine.diseaseCell biologyMitochondriaRatsPPAR gamma030104 developmental biologyNeurologyMitochondrial biogenesisFriedreich AtaxiaFrataxinbiology.proteinThiazolidinedionesmedicine.symptomMitochondrial function030217 neurology & neurosurgery
researchProduct

Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model

2020

Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. I…

0301 basic medicineAtaxiaClinical BiochemistryLipid peroxidationchemistry.chemical_elementMitochondrionCalciumEndoplasmic ReticulumBiochemistry03 medical and health sciences0302 clinical medicineMAMsmedicineAnimalsVitamin EMitochondrial calcium uptakelcsh:QH301-705.5Calcium signalinglcsh:R5-920biologyFrataxinEndoplasmic reticulumOrganic ChemistryN-acetylcysteineMitochondriaCell biologyOxidative StressDrosophila melanogaster030104 developmental biologychemistrylcsh:Biology (General)Friedreich AtaxiaFrataxinbiology.proteinCalciummedicine.symptomCellular modellcsh:Medicine (General)030217 neurology & neurosurgeryResearch PaperRedox Biology
researchProduct

2018

Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therap…

0301 basic medicineAtaxiaDiseaseCatalysisInorganic Chemistry03 medical and health sciences0302 clinical medicinemedicineDisease biomarkerPhysical and Theoretical ChemistryMolecular BiologyDrosophilaSpectroscopybiologyOrganic ChemistryGeneral Medicinebiology.organism_classificationPhenotype3. Good healthComputer Science Applications030104 developmental biologyFrataxinbiology.proteinmedicine.symptomDrosophila melanogasterNeuroscience030217 neurology & neurosurgeryGenetic screenInternational Journal of Molecular Sciences
researchProduct

Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

2017

15 Pages, 8 Figures. The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fnmol.2017.00264/full#supplementary-material

0301 basic medicineAtaxiaNeuriteFriedreich’s ataxiarare diseaseMitochondrionlcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineBAPTAmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyOriginal ResearchcalciumbiologyNeurodegenerationneurodegenerationFriedreich's ataxiaaxonal spheroidsmedicine.disease3. Good healthmitochondria030104 developmental biologyPeripheral neuropathychemistrynervous systemFrataxinbiology.proteinAxoplasmic transportmedicine.symptomNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies

2021

Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…

0301 basic medicineAtaxiaUbiquinoneAlpha-Lipoic AcidDiseaseMitochondrionIron Chelating AgentsBioinformaticsAntioxidantsLinoleic Acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCarnitinePhysiology (medical)AnimalsHumansMedicineDeferiproneCarnitineInner mitochondrial membraneCoenzyme Q10biologyAnimalbusiness.industryBiochemistry (medical)Public Health Environmental and Occupational HealthGeneral MedicineMitochondriaIron Chelating Agent030104 developmental biologyLinoleic AcidschemistryFriedreich Ataxia030220 oncology & carcinogenesisFrataxinbiology.proteinAntioxidantmedicine.symptombusinessHumanmedicine.drugTranslational Research
researchProduct

Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration

2020

Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying …

0301 basic medicineAtaxiaUnverricht–Lundborg disease (ULD)PhysiologyNeurodegeneration with brain iron accumulationClinical BiochemistryFriedreich’s ataxiaReviewmedicine.disease_causeBioinformaticsBiochemistry03 medical and health scienceschemistry.chemical_compoundLafora disease (LD)0302 clinical medicineMedicineprogressive myoclonus epilepsy (PME)Molecular BiologyNeuroinflammationReactive nitrogen speciesneurodegenerative disorders with brain iron accumulation (NBIA)business.industryNeurodegenerationlcsh:RM1-950NeurotoxicityCell Biologymedicine.diseaseDravet syndromeCharcot-Marie-Tooth disease (CMT)030104 developmental biologylcsh:Therapeutics. Pharmacologychemistrymedicine.symptombusinessMyoclonusinherited retinal dystrophy (IRD)030217 neurology & neurosurgeryOxidative stressAntioxidants
researchProduct

Drosophila melanogaster Models of Friedreich's Ataxia

2018

Friedreich’s ataxia (FRDA) is a rare inherited recessive disorder affecting the central and peripheral nervous systems and other extraneural organs such as the heart and pancreas. This incapacitating condition usually manifests in childhood or adolescence, exhibits an irreversible progression that confines the patient to a wheelchair, and leads to early death. FRDA is caused by a reduced level of the nuclear-encoded mitochondrial protein frataxin due to an abnormal GAA triplet repeat expansion in the first intron of the humanFXNgene.FXNis evolutionarily conserved, with orthologs in essentially all eukaryotes and some prokaryotes, leading to the development of experimental models of this dis…

0301 basic medicineAtaxialcsh:MedicineDiseaseReview ArticleBiologyGeneral Biochemistry Genetics and Molecular BiologyPathogenesis03 medical and health sciences0302 clinical medicinemedicineGeneGeneticsGeneral Immunology and Microbiologylcsh:RIntronGeneral Medicinebiology.organism_classification030104 developmental biologyFrataxinbiology.proteinSistema nerviós MalaltiesDrosophila melanogastermedicine.symptomGenètica030217 neurology & neurosurgeryFunction (biology)BioMed Research International
researchProduct

Incidentalome in Neurogenetics: Pathogenic Variant of NSD1 in a Patient With Spinocerebellar Ataxia (SCA)

2018

Background: Genetic studies of late-onset sporadic ataxias (>40 years of age) are not routinely indicated. For unresolved cases, next-generation sequencing (NGS) tools, such as whole-exome sequencing (WES), are available for a definitive diagnosis.Case presentation: Our patient is a woman with a usual facial phenotype and anthropometry, who developed ataxia at 45 years of age, with no relevant family history and an initial clinical approach that ruled out common aetiologies. WES was performed when the patient was 54 years old. The results identified the heterozygous pathogenic variant c.248delA (p.N83MfsX4) in the nuclear receptor-binding SET domain protein 1 (NSD1; MIM 606681) gene (rel…

0301 basic medicineAtaxialcsh:QH426-470Neurogeneticslate-onset sporadic ataxiasNSD103 medical and health sciencessymbols.namesakemedicineGeneticswhole-exome sequencingFamily historyGenetics (clinical)Exome sequencingGeneticsSanger sequencingSotos syndromebusiness.industrydiagnostics testmedicine.diseasePhenotypelcsh:Genetics030104 developmental biologyPerspectivegenetic incidentalomeSpinocerebellar ataxiasymbolsMolecular Medicinemedicine.symptombusinessFrontiers in Genetics
researchProduct