Search results for "Austenite"

showing 10 items of 32 documents

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct

Strain detection in non-magnetic steel by Kerr-microscopy of magnetic tracer layers

2018

Abstract For many applications of steel, e.g. for the evaluation of the fatigue state of components or structures, the characterization of the microscopic strain distribution in the material is important. We present a proof-of-principle for the visualization of such strain distributions by Kerr-microscopy of ferromagnetic tracer layers on nonmagnetic steel sheets. The influence of indentation induced strain on the magnetic domain pattern of 20 nm Galfenol and Permalloy tracer layers on austenitic AISI 904L steel sheets was investigated. The obtained Kerr-microscopy images show a characteristic domain pattern in the strained regions of the steel sheets, which is consistent with a dominant ma…

010302 applied physicsPermalloyAusteniteMaterials scienceStrain (chemistry)Magnetic domainPattern formation02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsFerromagnetismIndentation0103 physical sciencesComposite material0210 nano-technologyGalfenolJournal of Magnetism and Magnetic Materials
researchProduct

Influence of the passive film properties and residual stresses on the micro-electrochemical behavior of duplex stainless steels

2010

In the present paper, the chemical composition of passive films formed on both phases of two types of duplex stainless steels (UNS S31803 and UNS S32304) is determined at the micro-scale using Auger electron spectroscopy (AES). Samples were either mechanically polished (down to diamond pastes) or electrochemically etched in acidic solutions. The micro-electrochemical behavior of samples was then determined in sodium chloride media by means of the electrochemical micro-cell technique (capillary diameters of 30 μm). The results obtained were analyzed considering the passive film chemical composition. Quantitative relationships between electrochemical parameters and the distribution of chromiu…

AusteniteAuger electron spectroscopyMaterials sciencePassivationGeneral Chemical EngineeringSurface stressMetallurgyOxideCorrosionchemistry.chemical_compoundchemistryResidual stressElectrochemistrySurface layerElectrochimica Acta
researchProduct

An integrated approach to evaluating the tribo-contact for coated cutting inserts

2000

Abstract The orthogonal machining process when end turning medium carbon and austenitic stainless steels with cemented WC-Co tools coated with single-layer (TiC), two-layer (TiC/TiN), and three-layer (TiC/Al2O3/TiN) hard thin films was investigated. Extensive experimental investigations including the thermal, mechanical and tribological responses of the tribo-contact between the coating–substrate system and the chip, under different cutting conditions, were carried out. The study sheds light on the cutting forces, the interface temperatures and the tribo-contact conditions, including the friction energy dissipated at the tool–chip interface, the frictional heat flux conducting into either t…

AusteniteInsert (composites)Materials scienceMetallurgychemistry.chemical_elementSurfaces and InterfacesTribologyengineering.materialCondensed Matter PhysicsSurfaces Coatings and FilmschemistryCoatingHeat fluxMechanics of MaterialsMaterials ChemistryengineeringThin filmComposite materialContact areaTinWear
researchProduct

Corrosion Phenomena of Eurofeer Steel in Pb-17Li Stationary Flow at Magnetic Field

2006

Search of new energy sources draws the increasing attention to use for this purpose of reactors. In the Europe some years the program EUROATOM uniting scientific of the many countries for the decision of constructive problems at designing of fusion reactors operates. One of the main things in this program is the problem of liquid metals breeder blanket behaviour. Structural material of blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of the effect of metals flow velocity, temperatures and also a neutron irradiation and a magnetic field on the corrosion processes are necessary. At the moment the eutectic lead -lithium (Pb-17Li) is conside…

AusteniteLiquid metalMaterials scienceBreeder (animal)MetallurgyBlanketEnergy sourceMagnetic fieldCorrosionEutectic systemVolume 1: Plant Operations, Maintenance and Life Cycle; Component Reliability and Materials Issues; Codes, Standards, Licensing and Regulatory Issues; Fuel Cycle and High Level Waste Management
researchProduct

Effect of Plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 micro-alloyed boron steel

2009

The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s−1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermome…

AusteniteMaterials scienceBainiteMetallurgyMetals and AlloysHot stampingengineering.materialStrain rateContinuous cooling transformationCondensed Matter PhysicsMicrostructureIndentation hardness22MnB5 continuous cooling transformationsMechanics of MaterialsengineeringMicroalloyed steelComposite material
researchProduct

Influence of the grain orientation spread on the pitting corrosion resistance of duplex stainless steels using electron backscatter diffraction and c…

2013

Abstract The corrosion behavior of UNS S32202 duplex stainless steel was studied by combining electron backscatter diffraction (EBSD) measurements and critical pitting temperature tests at the microscale. The grain orientation spread (GOS) value was determined in grains of both phases from EBSD data. It was shown that austenitic sites containing extremely small ferrite grains having a GOS value greater than 1.3° were precursor sites for pitting in 4 M NaCl. The critical pitting temperature range was 45–90 °C. All the other sites of both phases remained passive up to 100 °C.

AusteniteMaterials scienceDual-phase steelElectron diffractionGeneral Chemical EngineeringMetallurgyPitting corrosionGeneral Materials ScienceGeneral ChemistryAtmospheric temperature rangeMicrostructureCorrosionElectron backscatter diffractionCorrosion Science
researchProduct

Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spe…

2013

Abstract Passivity of duplex stainless steel was studied after long-term ageing in air using local electrochemical impedance spectroscopy, AES, XPS and EBSD. After mechanical polishing, the passive film was homogeneous and had a capacitive behaviour described by the CPE. After long-term ageing, a small thickening was detected and O2−/OH− was significantly higher in the austenite than in the ferrite. Austenite behaved as a blocking electrode whereas two capacitive loops were observed in the ferrite (low value of O2−/OH). The loop at high frequencies was related with the oxygen reduction and the loop at low frequencies was connected with the passive film.

AusteniteMaterials scienceGeneral Chemical EngineeringCapacitive sensingMetallurgyGeneral ChemistryDielectric spectroscopyCorrosionX-ray photoelectron spectroscopyFerrite (iron)ElectrodeGeneral Materials ScienceComposite materialElectron backscatter diffractionCorrosion Science
researchProduct

Localized hydrogen cracking in the austenitic phase of a duplex stainless steel

1996

The aim of this study is to investigate the role of hydrogen on the mechanical behavior of an austenitic phase, in the particular situation of duplex stainless steels. In these duplex alloys, in presence of hydrogen, the ferritic phase is embrittled by hydrogen and the resistance to cracking is mainly related to the behavior of the austenitic phase. Thus, a discussion of the role of hydrogen at the crack tip of a duplex alloy (as function of the microstructure) has been proposed by T. Perng and C.J. Altester after experiments conducted in gaseous environment. A similar experimental approach has been followed in this study; slow strain rate tests (SSRT) have been performed on duplex stainles…

AusteniteMaterials scienceHydrogenMechanical EngineeringAlloyMetallurgyMetals and Alloyschemistry.chemical_elementengineering.materialCondensed Matter PhysicsMicrostructureCorrosionchemistryMechanics of MaterialsengineeringGeneral Materials ScienceStress corrosion crackingEmbrittlementHydrogen embrittlementScripta Materialia
researchProduct

Relationships between the Impedance of Oxide Scales on Martensitic and Austenitic Steels and Corrosion Rate in Liquid Lead-Bismuth Eutectic

2004

Abstract The impedance properties (resistance and capacitance) of oxide scales on the martensitic/ferritic steel HT-9 and austenitic stainless steel Type 316L (UNS S31603) were examined during immersion in lead-bismuth eutectic (LBE) using a technique similar to electrochemical impedance spectroscopy. These scales were created by preoxidizing the samples in an air/water vapor environment at 800°C for various times prior to immersion in LBE. Calculation of oxide conductivity for samples immersed in LBE at 200°C for 200 h yielded σHT9 ≈ 4 × 10−7 (Ω × cm)−1 while σ316 ≈ 3 × 10−8 (Ω × cm)−1. The influence of temperature alone gave the anticipated Arrhenius behavior with Ea equal to 0.12 eV, whi…

AusteniteMaterials scienceLead-bismuth eutecticGeneral Chemical EngineeringMetallurgyOxideAnalytical chemistryGeneral ChemistryConductivityengineering.materialCorrosionDielectric spectroscopychemistry.chemical_compoundchemistryengineeringGeneral Materials ScienceAustenitic stainless steelEutectic systemCORROSION
researchProduct