Search results for "Austenite"

showing 10 items of 32 documents

ANN Model to predict the bake hardenability of Transformation-Induced Plasticity steels

2009

Neural networks are useful tools for optimizing material properties, considering the material’s microstructure and therefore the thermal treatments it has undergone. In this research an artificial neural network (ANN) with a Bayesian framework able to predict the bake hardening and the mechanical properties of the Transformation-Induced-Plasticity (TRIP) steels was designed. The forecast ability of the ANN model is achieved taking into account the operating parameters involved in the Intercritical Annealing (IA), in the Isothermal Bainite Treatment (IBT) and also considering the different prestrain values and the volume fraction of the retained austenite before the Bake Hardening (BH) treat…

AusteniteMaterials scienceTrip Steel Bake hardening Artificial Neural NetworkArtificial neural networkBainiteMetallurgyTRIP steelMechanical engineeringPlasticityMaterial propertiesIsothermal processHardenability
researchProduct

A Mechano-Chemical Coupling for Hydrogen Diffusion in Metals Based on a Thermodynamic Approach

2014

Hydrogen diffusion in metals is still an ongoing topic of research due to its technical relevance (hydrogen embrittlement, hydrogen storage...). In the last decades, significant progress in understanding the time evolution of the hydrogen concentration in solids was completed. This paper presents a modeling of hydrogen diffusion with a general and thermodynamically based diffusion concept coupled with mechanical and chemical aspects. This model was previously used to simulate the oxidation of a metal [1][2]. This concept has been upgraded to offer a thoroughly macroscopic behavior law used to simulate hydrogen diffusion in metal parts under mechanical loadings. The thermodynamic approach of…

AusteniteRadiationMaterials scienceHydrogenTime evolutionchemistry.chemical_elementInternal pressureThermodynamicsCondensed Matter PhysicsMetalchemistryvisual_artForensic engineeringvisual_art.visual_art_mediumCoupling (piping)General Materials ScienceDiffusion (business)Hydrogen embrittlementDefect and Diffusion Forum
researchProduct

Wavelets Image Analysis for Friction Stir Processed TiNi Functional Behavior Characterization

2015

Abstract A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that pr…

AusteniteWavelets image analysis Friction Stir Processing Shape memory alloyFriction stir processingMaterials scienceShape memory alloys.MetallurgyWavelets image analysisGeneral MedicineWeldingShape-memory alloyFriction Stir ProcessingMicrostructurelaw.inventionlawDiffusionless transformationMartensiteFriction stir weldingComposite materialEngineering(all)Procedia Engineering
researchProduct

Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

2018

AIF acknowledge support by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02 03ER15476. AIF acknowledges support by the Laboratory Directed Research and Development Program through LDRD 18-047 of Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704 for initiating his research in machine learning methods. The help of the beamline staff at ELETTRA (project 20160412) synchrotron radiation facility is acknowledged. RMC-EXAFS and MD-EXAFS simulations were performed on the LASC cluster-type computer at Institute of Solid State Physics of the University of Latvia.

AusteniteWork (thermodynamics)Materials scienceGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyRadial distribution function01 natural sciencesSpectral lineX-ray absorption fine structureChemical physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physics0210 nano-technologySpectroscopyAbsorption (electromagnetic radiation)Curse of dimensionalityPhysical Review Letters
researchProduct

ODS steel raw material local structure analysis using X-ray absorption spectroscopy

2015

Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after …

AusteniteX-ray absorption spectroscopyChromiumchemistry.chemical_compoundMaterials scienceAbsorption spectroscopyExtended X-ray absorption fine structurechemistryMetallurgyOxidechemistry.chemical_elementAbsorption (electromagnetic radiation)XANESIOP Conference Series: Materials Science and Engineering
researchProduct

Electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels

2018

Abstract Passive films were grown at constant potential in acidic (pH∼2) and alkaline (pH∼13) solutions on chromium, AISI 304L, AISI 316L and Duplex stainless steels. Passive films on chromium grow following a high field mechanism considering the presence of dissolution phenomena. According to the photoelectrochemical characterization, passive films on Cr have a bandgap of 3.4 eV when formed in acidic solution, and of 2.4 eV when formed in alkaline solution due to the formation of Cr(OH)3. These films result to be poorly stable against anodic dissolution due to a very anodic flat band potential. Conversely, impedance and photoelectrochemical measurements proved that passive films on stainle…

ChromiumMaterials sciencePassivationBand gapAustenitic stainless steel020209 energyGeneral Chemical EngineeringPhotoelectrochemistryPassive filmCorrosion resistancechemistry.chemical_element02 engineering and technologyengineering.materialCorrosionChromiumPhotoelectrochemistryMott-Schottky0202 electrical engineering electronic engineering information engineeringElectrochemistryChemical Engineering (all)Austenitic stainless steelDissolutionAustenite021001 nanoscience & nanotechnologySettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringengineeringDuplex stainless steel0210 nano-technology
researchProduct

A Mechanical–Electrochemical Approach for the Determination of Precursor Sites for Pitting Corrosion at the Microscale

2006

International audience; The influence of metallurgical defects and residual surface stresses generated by polishing on the pitting susceptibility of duplex stainless steels was studied by combining macro- and microelectrochemical measurements with thermal-mechanical simulation and metallography tests. It has been shown that pits initiate in both phases at metallurgical point defects (such as oxide inclusions in the ferrite and dislocation lines in the austenite). By contrast, the surface stress state was the driving force for pit initiation along the austenite/ferrite interface. Experiments at the macroscale revealed that this process represents about 40% of the total number of pits observe…

Materials science020209 energyOxidePolishing02 engineering and technologychemistry.chemical_compoundFerrite (iron)0202 electrical engineering electronic engineering information engineeringMaterials ChemistryElectrochemistryPitting corrosionAusteniteRenewable Energy Sustainability and the EnvironmentSurface stressMetallurgy021001 nanoscience & nanotechnologyCondensed Matter PhysicsCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry13. Climate action[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryMetallography0210 nano-technologyJournal of The Electrochemical Society
researchProduct

Corrosion behaviour of a highly alloyed austenitic alloy UB6 in contaminated phosphoric acid

2013

The influence of temperature (20–80°C) on the electrochemical behaviour of passive films anodically formed on UB6 stainless steel in phosphoric acid solution (5.5 M H3PO4) has been examined by using potentiodynamic curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the consequence of the semiconducting properties of the iron …

Materials scienceArticle SubjectAlloyIron oxideengineering.materialElectrochemistryINGENIERIA QUIMICACorrosionchemistry.chemical_compoundlcsh:TA401-492General Materials ScienceCorrosion behaviourP type semiconductorPhosphoric acidInterfacial impedancePotentiodynamic curvesAustenitebusiness.industryProcess Chemistry and TechnologyMetallurgySemi-conducting propertyDielectric spectroscopyElectroquímicaElectrochemical behaviourSemiconductorSemiconductorschemistryengineeringMott-Schottky analysislcsh:Materials of engineering and construction. Mechanics of materialsbusinessFlat band potential
researchProduct

New generation super alloy candidates for medical applications: Corrosion behavior, cation release and biological evaluation

2014

Three super alloy candidates (X1 CrNiMoMnW 24-22-6-3-2 N, NiCr21 MoNbFe 8-3-5 AlTi, CoNiCr 35-20 Mo 10 BTi) for a prolonged contact with skin are evaluated in comparison with two reference austenitic stainless steels 316L and 904L. Several electrochemical parameters were measured and determined (E(oc), E(corr), i(corr), b(a), b(c), E(b), R(p), E(crev) and coulometric analysis) in order to compare the corrosion behavior. The cation release evaluation and in vitro biological characterization also were performed. In terms of corrosion, the results reveal that the 904L steels presented the best behavior followed by the super austenitic steel X1 CrNiMoMnW 24-22-6-3-2 N. For the other two super a…

Materials scienceBiocompatible MaterialsBioengineeringElectrochemistryCell LineCorrosionBiomaterialsCoulometryMiceCationsMaterials TestingAlloysElectrochemistryHuman Umbilical Vein Endothelial CellsAnimalsHumansNichromeCorrosion behaviorCell ProliferationAusteniteTumor Necrosis Factor-alphaExtraction (chemistry)MetallurgyIntercellular Adhesion Molecule-1Stainless SteelCorrosionSuperalloyMetalsMechanics of MaterialsHeLa CellsMaterials Science and Engineering: C
researchProduct

Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a …

2014

The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni contentmodified the electronic behaviour of highly alloyed austenitic stainless steels.Mo did notmodify the electronic structure of the passive films, but reduced the concentration of defects.

Materials scienceCarbon steelAcerElectronic structureengineering.materialElectrochemistryINGENIERIA QUIMICAStainless steelchemistry.chemical_compoundCarbon steelMaterials ChemistryElectronic propertiesAusteniteSemiconducting propertiesMott SchottkyLithium bromideMetallurgyMetals and AlloysMott schottkySurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsThin passive filmsElectroquímicachemistrySemiconductorsengineering
researchProduct