Search results for "Austenite"
showing 10 items of 32 documents
ANN Model to predict the bake hardenability of Transformation-Induced Plasticity steels
2009
Neural networks are useful tools for optimizing material properties, considering the material’s microstructure and therefore the thermal treatments it has undergone. In this research an artificial neural network (ANN) with a Bayesian framework able to predict the bake hardening and the mechanical properties of the Transformation-Induced-Plasticity (TRIP) steels was designed. The forecast ability of the ANN model is achieved taking into account the operating parameters involved in the Intercritical Annealing (IA), in the Isothermal Bainite Treatment (IBT) and also considering the different prestrain values and the volume fraction of the retained austenite before the Bake Hardening (BH) treat…
A Mechano-Chemical Coupling for Hydrogen Diffusion in Metals Based on a Thermodynamic Approach
2014
Hydrogen diffusion in metals is still an ongoing topic of research due to its technical relevance (hydrogen embrittlement, hydrogen storage...). In the last decades, significant progress in understanding the time evolution of the hydrogen concentration in solids was completed. This paper presents a modeling of hydrogen diffusion with a general and thermodynamically based diffusion concept coupled with mechanical and chemical aspects. This model was previously used to simulate the oxidation of a metal [1][2]. This concept has been upgraded to offer a thoroughly macroscopic behavior law used to simulate hydrogen diffusion in metal parts under mechanical loadings. The thermodynamic approach of…
Wavelets Image Analysis for Friction Stir Processed TiNi Functional Behavior Characterization
2015
Abstract A key topic regarding Ti Ni Shape Memory materials concerns the possibility to attain welded junctions that preserves the shape memory properties of material. Other research topic for SMAs regards the retention of the shape memory effect cyclic stability; in fact, good shape memory properties frequently decrease during SME cycling of material. A method able to improve the cyclic stability of TiNi shape memory effect is the grain refinement. Considering these above mentioned research topics, a solid state welding process, as the Friction Stir Welding, is thus attractive for SMA joining and it exhibits potentials for achieving welded joints affected by microstructural changes that pr…
Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy
2018
AIF acknowledge support by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02 03ER15476. AIF acknowledges support by the Laboratory Directed Research and Development Program through LDRD 18-047 of Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704 for initiating his research in machine learning methods. The help of the beamline staff at ELETTRA (project 20160412) synchrotron radiation facility is acknowledged. RMC-EXAFS and MD-EXAFS simulations were performed on the LASC cluster-type computer at Institute of Solid State Physics of the University of Latvia.
ODS steel raw material local structure analysis using X-ray absorption spectroscopy
2015
Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after …
Electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels
2018
Abstract Passive films were grown at constant potential in acidic (pH∼2) and alkaline (pH∼13) solutions on chromium, AISI 304L, AISI 316L and Duplex stainless steels. Passive films on chromium grow following a high field mechanism considering the presence of dissolution phenomena. According to the photoelectrochemical characterization, passive films on Cr have a bandgap of 3.4 eV when formed in acidic solution, and of 2.4 eV when formed in alkaline solution due to the formation of Cr(OH)3. These films result to be poorly stable against anodic dissolution due to a very anodic flat band potential. Conversely, impedance and photoelectrochemical measurements proved that passive films on stainle…
A Mechanical–Electrochemical Approach for the Determination of Precursor Sites for Pitting Corrosion at the Microscale
2006
International audience; The influence of metallurgical defects and residual surface stresses generated by polishing on the pitting susceptibility of duplex stainless steels was studied by combining macro- and microelectrochemical measurements with thermal-mechanical simulation and metallography tests. It has been shown that pits initiate in both phases at metallurgical point defects (such as oxide inclusions in the ferrite and dislocation lines in the austenite). By contrast, the surface stress state was the driving force for pit initiation along the austenite/ferrite interface. Experiments at the macroscale revealed that this process represents about 40% of the total number of pits observe…
Corrosion behaviour of a highly alloyed austenitic alloy UB6 in contaminated phosphoric acid
2013
The influence of temperature (20–80°C) on the electrochemical behaviour of passive films anodically formed on UB6 stainless steel in phosphoric acid solution (5.5 M H3PO4) has been examined by using potentiodynamic curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the consequence of the semiconducting properties of the iron …
New generation super alloy candidates for medical applications: Corrosion behavior, cation release and biological evaluation
2014
Three super alloy candidates (X1 CrNiMoMnW 24-22-6-3-2 N, NiCr21 MoNbFe 8-3-5 AlTi, CoNiCr 35-20 Mo 10 BTi) for a prolonged contact with skin are evaluated in comparison with two reference austenitic stainless steels 316L and 904L. Several electrochemical parameters were measured and determined (E(oc), E(corr), i(corr), b(a), b(c), E(b), R(p), E(crev) and coulometric analysis) in order to compare the corrosion behavior. The cation release evaluation and in vitro biological characterization also were performed. In terms of corrosion, the results reveal that the 904L steels presented the best behavior followed by the super austenitic steel X1 CrNiMoMnW 24-22-6-3-2 N. For the other two super a…
Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a …
2014
The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni contentmodified the electronic behaviour of highly alloyed austenitic stainless steels.Mo did notmodify the electronic structure of the passive films, but reduced the concentration of defects.