Search results for "Automation"
showing 10 items of 1181 documents
Intelligent virtual manufacturing cell formation in cloud-based design and manufacturing
2018
Abstract Cloud-based design and manufacturing (CBDM) can presumably stimulate greater intelligence in cloud-based models. This paper assumes that cloud-based design for cellular manufacturing can be referred to as a multiscale, uncertain, and dynamic service-oriented network where a set of CAD parts, modelled by set of features, can be manufactured in intelligent virtual manufacturing cells under certain constraints. Using the concepts of the holon and the attractor, integrating the uncertainty in the modelling of part design and part–manufacturing network, an approach to address intelligent virtual manufacturing cell formation in CBDM is proposed. The powerful role of the CAD features is e…
Cross-Layer MAC Protocol for Unbiased Average Consensus Under Random Interference
2019
Wireless Sensor Networks have been revealed as a powerful technology to solve many different problems through sensor nodes cooperation. One important cooperative process is the so-called average gossip algorithm, which constitutes a building block to perform many inference tasks in an efficient and distributed manner. From the theoretical designs proposed in most previous work, this algorithm requires instantaneous symmetric links in order to reach average consensus. However, in a realistic scenario wireless communications are subject to interferences and other environmental factors, which results in random instantaneous topologies that are, in general, asymmetric. Consequently, the estimat…
Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric
2019
This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…
Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks
2020
Contact driven tasks, such as surface conditioning operations (wiping, polishing, sanding, etc.), are difficult to program in advance to be performed autonomously by a robotic system, specially when the objects involved are moving. In many applications, human-robot physical interaction can be used for the teaching, specially in learning from demonstrations frameworks, but this solution is not always available. Robot teleoperation is very useful when user and robot cannot share the same workspace due to hazardous environments, inaccessible locations, or because of ergonomic issues. In this sense, this article introduces a novel dual-arm teleoperation architecture with haptic and visual feedb…
Prediction of Vehicle Crashworthiness Parameters Using Piecewise Lumped Parameters and Finite Element Models
2018
Estimating the vehicle crashworthiness parameters experimentally is expensive and time consuming. For these reasons different modelling approaches are utilized to predict the vehicle behaviour and reduce the need for full-scale crash testing. The earlier numerical methods used for vehicle crashworthiness analysis were based on the use of lumped parameters models (LPM), a combination of masses and nonlinear springs interconnected in various configurations. Nowadays, the explicit nonlinear finite element analysis (FEA) is probably the most widely recognized modelling technique. Although informative, finite element models (FEM) of vehicle crash are expensive both in terms of man-hours put into…
Advancing manufacturing systems research at NAMRC 46
2018
Research on manufacturing systems is further enriched and becomes stronger at the 46th North American Manufacturing Research Conference (NAMRC 46) at Texas A&M University, College Station, TX, USA. Advancing manufacturing systems is more prevalent than before due to recent industrial revolution (or Industry 4.0), continuous business decentralisation and needs for better overall resource efficiency and effectiveness. Manufacturers are competing in a global, dynamic marketplace that demands excellence in quality and service, throughput, innovativeness, agility in production, short response time to changing markets, and tight profitable margins. In the 21st century, manufacturing will be g…
Summarizing Large Scale 3D Mesh
2018
International audience; Recent progress in 3D sensor devices and in semantic mapping allows to build very rich HD 3D maps very useful for autonomous navigation and localization. However , these maps are particularly huge and require important memory capabilities as well computational resources. In this paper, we propose a new method for summarizing a 3D map (Mesh) as a set of compact spheres in order to facilitate its use by systems with limited resources (smartphones, robots, UAVs, ...). This vision-based summarizing process is applied in a fully automatic way using jointly photometric, geometric and semantic information of the studied environment. The main contribution of this research is…
Model-Free Sliding-Mode-Based Detection and Estimation of Backlash in Drives With Single Encoder
2021
Backlash is a frequently encountered problem for various drives, especially those equipped with a single encoder onside of the controlled actuator. This brief proposes a sliding-mode differentiator-based estimation of unknown backlash size while measuring the actuator displacement only. Neither actuator nor load dynamics are explicitly known, while a principal second-order actuator behavior is assumed. We make use of the different perturbation dynamics distinctive for different backlash modes and an unbounded impulse-type perturbation at impact. The latter leads to transient loss of the sliding-mode and allows for detecting an isolated time instant of the backlash occurrence. The proposed m…
Use of second-order sliding mode observer for low-accuracy sensing in hydraulic machines
2018
Low-accuracy sensing is very common for the large hydraulic machines and does not allow for directly measuring the relative velocity which can be, otherwise, required for the control and monitoring purposes. This paper provides a case study of designing the second-order sliding mode observer based on the super-twisting robust exact differentiator. The nominal part of the system dynamics is derived from the simple available system measurements and incorporated into the observer structure. Parasitic by-effects, arising from the sensor sampling, quantization, and non-modeled distortions due to mechanical sensor interface, are shown as the main causes of hampering the final (steady-state) conve…
Compensation of Nonlinear Torsion in Flexible Joint Robots: Comparison of Two Approaches
2015
Flexible joint robots, in particularly those which are equipped with harmonic-drive gears, can feature elasticities with hysteresis. Under heavy loads and large joint torques the hysteresis lost motion can lead to significant errors of tracking and positioning of the robotic links. In this paper, two approaches for compensating the nonlinear joint torsion with hysteresis are described and compared with each other. Both methods assume the measured signals available only on the motor side of joint transmissions. The first approach assumes a rigid-link manipulator model and transforms the desired link trajectory into that of the motor drives by using the inverse dynamics and inverse hysteresis…