Search results for "Automorphisms"

showing 4 items of 24 documents

Affine Surfaces With a Huge Group of Automorphisms

2013

We describe a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S) is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.

Normal subgrouprational fibrationsautomorphismsGroup (mathematics)General Mathematics010102 general mathematicsAutomorphism01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsMathematics::LogicMathematics - Algebraic GeometryMathematics::Group Theory0103 physical sciencesFree groupCountable setUncountable set[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics0101 mathematicsAlgebraic number14R25 14R20 14R05 14E05affine surfacesQuotientMathematicsInternational Mathematics Research Notices
researchProduct

Automorphisms of hyperelliptic GAG-codes

2009

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

Abelian varietyDiscrete mathematicsautomorphismsGroup (mathematics)Applied Mathematicsgeneralized algebraic geometry codes.Outer automorphism groupReductive groupAutomorphismTheoretical Computer ScienceCombinatoricsMathematics::Group Theorygeometric Goppa codeAlgebraic groupDiscrete Mathematics and Combinatoricsalgebraic function fieldsSettore MAT/03 - GeometriaIsomorphismfinite fieldsGeometric Goppa codesfinite fieldalgebraic function fieldHyperelliptic curvegeneralized algebraic-geometry codesMathematicsDiscrete Mathematics
researchProduct

Embedding mapping class groups of orientable surfaces with one boundary component

2012

We denote by $S_{g,b,p}$ an orientable surface of genus $g$ with $b$ boundary components and $p$ punctures. We construct homomorphisms from the mapping class groups of $S_{g,1,p}$ to the mapping class groups of $S_{g',1,(b-1)}$, where $b\geq 1$. These homomorphisms are constructed from branched or unbranched covers of $S_{g,1,0}$ with some properties. Our main result is that these homomorphisms are injective. For unbranched covers, this construction was introduced by McCarthy and Ivanov~\cite{IM}. They proved that the homomorphisms are injective. A particular cases of our embeddings is a theorem of Birman and Hilden that embeds the braid group on $p$ strands into the mapping class group of …

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Mapping class group. Automorphisms of free groups. Ordering. Ends of groupsMapping class group. Automorphisms of free groups. Ordering. Ends of groups.[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Primary: 20F34; Secondary: 20E05 20E36 57M99.[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]
researchProduct

Automorphisms of Hyperelliptic GAG-codes

2008

In this talk, we discuss the n-automorphism groups of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such groups are, up to isomorphism, subgroups of the automorphism groups of the underlying function fields. We also present some examples in which the n-automorphism groups can be determined explicitly.

Automorphisms CodesSettore MAT/03 - Geometria
researchProduct