Search results for "Azole"

showing 10 items of 2392 documents

Strong Influence of the Ancillary Ligand over the Photodynamic Anticancer Properties of Neutral Biscyclometalated IrIII Complexes Bearing 2-Benzoazol…

2018

In this paper, the synthesis, comprehensive characterization and biological and photocatalytic properties of two series of neutral IrIII biscyclometalated complexes of general formula [Ir(C^N)2(N^O)], where the N^O ligands are 2‐(benzimidazolyl)phenolate‐N,O (L1, series a) and 2‐(benzothiazolyl)phenolate‐N,O (L2, series b), and the C^N ligands are 2‐(phenyl)pyridinate or its derivatives, are described,. Complexes of types a and b exhibit dissimilar photophysical and biological properties. In vitro cytotoxicity tests conclusively prove that derivatives of series a are harmless in the dark against SW480 cancer cells (colon adenocarcinoma), but express enhanced cytotoxicity versus the same cel…

010405 organic chemistryLigandChemistrymedicine.medical_treatmentOrganic ChemistryPhotodynamic therapy2-arylazolesphotodynamictherapyQuímicaGeneral Chemistry010402 general chemistry01 natural sciencesMedicinal chemistryanticancercomplexesCatalysis0104 chemical sciencesChemistryheterolepticneutraliridium(III)complexesmedicinephosphorescent complexesChemistry - A European Journal
researchProduct

Triazole vs. triazolium carbene ligands in the site-selective cyclometallation of o-carboranes by M(iii) (M = Ir, Rh) complexes

2018

Ir(iii) and Rh(iii)-mediated site-selective cage B-H and C-H bond activation in o-carboranylmethyl derivatives has been achieved. The selectivity of the reaction is related to the electron donating properties of the ligand. 1,2,3-Triazole-derivatives use the N2 position of the triazole ring to direct the selective o-carborane B-H bond activation, whereas the corresponding triazolylidene derivatives lead to the cage C-H bond activation with complete site-selectivity.

010405 organic chemistryLigandTriazole010402 general chemistryRing (chemistry)01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistrySite selectiveSelectivityCarbeneDalton Transactions
researchProduct

Deprotonation of Benzoxazole and Oxazole Using Lithium Magnesates

2005

International audience; The first deprotonations of oxazole and benzoxazole using lithium magnesates are described. The reactions occurred in tetrahydrofuran at room temperature using 1/3 equiv of lithium tributylmagnesate. As 2-lithiooxazole and 2-lithiobenzoxazole, lithium tri(2-oxazolyl)magnesate and lithium tri(2-benzoxazolyl)magnesate very rapidly and completely isomerized to the more stable 2-(isocyano)enolate and 2-(isocyano)phenolate type structures, respectively, a result shown by NMR analysis. The isolation of 2-substituted oxazoles and benzoxazoles in medium to good yields after electrophilic trapping was interpreted in two ways:  (1) the equilibration between the open and closed…

010405 organic chemistryLithium bromide[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic Chemistrychemistry.chemical_element[CHIM.THER]Chemical Sciences/Medicinal Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.CATA]Chemical Sciences/CatalysisBenzoxazole[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistry0104 chemical scienceschemistry.chemical_compoundDeprotonationchemistryIntramolecular forceElectrophile[CHIM]Chemical SciencesLithium[CHIM.RADIO]Chemical Sciences/RadiochemistryTetrahydrofuranOxazole
researchProduct

CuII2, CuII4 and CuII6 complexes with 3-(2-pyridyl)pyrazolate. Structure, magnetism and core interconversion

2019

Abstract Reactions of stoichiometric amounts of L1(−) (HL1 = 3-(2-pyridyl)pyrazole) with [Cu(H2O)6](ClO4)2, with or without PhCO2−, in MeOH or N,N′-dimethylformamide (dmf), led to the isolation of three copper(II) complexes of varying nuclearity, [CuII2(L1)2(ClO4)2(MeOH)2] (1), [CuII4(L1)4(O2CPh)2(MeOH)4](ClO4)2·2H2O (2) and [CuII6(L1)6(O2CPh)2(ClO4)2(dmf)4](ClO4)2·2dmf·2H2O (3). Structural analysis reveals two centrosymmetric four-coordinate {CuII(L1)(ClO4)(MeOH)} units are dipyrazolate-bridged in 1, giving rise to a square-pyramidal (SP; τ = 0.13) coordination to the CuII ion. In 2, two centrosymmetric four-coordinate dipyrazolate-bridged {CuII2(μ-L1)2(MeOH)2}2+ units in two layers are he…

010405 organic chemistryMagnetismchemistry.chemical_elementPyrazole010402 general chemistry01 natural sciencesCopperAntiferromagnetic coupling0104 chemical sciencesIonInorganic ChemistrySolventchemistry.chemical_compoundCrystallographychemistryMaterials ChemistryPhysical and Theoretical ChemistryStoichiometryPolyhedron
researchProduct

A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation

2021

The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…

010405 organic chemistryRenewable Energy Sustainability and the EnvironmentUNESCO::QUÍMICAHigh selectivityTriazoleGeneral ChemistryMicroporous materialQuímica010402 general chemistry01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesIonchemistry.chemical_compoundAdsorptionchemistryChemical engineeringCarbon dioxideMoleculeGeneral Materials ScienceLinkerMaterialsKinetic diameterJournal of Materials Chemistry A
researchProduct

Magneto-structural correlations in a family of ReIVCuII chains based on the hexachlororhenate(IV) metalloligand

2017

Six novel one-dimensional chloro-bridged ReIVCuII complexes of formula {[Cu(L)4][ReCl6]}n, where L = imidazole (Imi, 1), 1-methylimidazole (Meim, 2), 1-vinylimidazole (Vim, 3), 1-butylimidazole (Buim, 4), 1-vinyl-1,2,4-triazole (Vtri, 5) and N,N’-dimethylformamide (DMF, 6) are characterised structurally, magnetically and theoretically. The structures exhibit significant differences in Cu–Cl bond lengths and Re–Cl–Cu bridging angles, resulting in large differences in the nature and magnitude of magnetic exchange interactions between the ReIV and CuII ions. Theoretical calculations reveal the coupling to be primarily ferromagnetic, increasing in magnitude as the bridging angle becomes smaller…

010405 organic chemistryStereochemistry010402 general chemistry01 natural sciences0104 chemical sciencesMagnetic exchangeIonInorganic ChemistryBond lengthchemistry.chemical_compoundCrystallographychemistryFerromagnetismImidazole
researchProduct

Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from Escherichia coli

2020

The crystal structure of ZnZnuA from Escherichia coli reveals two metal binding sites. (i) The primary binding site, His143, is located close the His-rich loop (residues 116-138) and plays a significant role in Zn(II) acquisition. (ii) The secondary binding site involves His224. In this work, we focus on understanding the interactions of two metal ions, Zn(II) and Cu(II), with two regions of ZnuA, which are possible anchoring sites for Zn(II): Ac-115MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW145-NH2 (primary metal binding site) and Ac-223GHFTVNPEIQPGAQRLHE240-NH2 (secondary metal binding site). The histidine-rich loop (residues 116-138) has a role in the capture of zinc(II), which is then further deliv…

010405 organic chemistryStereochemistryChemistrychemistry.chemical_elementMetal Binding SitePeriplasmic spaceZinc010402 general chemistryLigand (biochemistry)01 natural sciences0104 chemical sciencesInorganic ChemistryMetalchemistry.chemical_compoundvisual_artvisual_art.visual_art_mediumImidazolePhysical and Theoretical ChemistryBinding siteHistidine
researchProduct

Extending the halogen-bonded supramolecular synthon concept to 1,3,4-oxadiazole derivatives

2016

A series of five crystal structures of 1:1 halogen-bonded complexes were obtained from 4-[5-(4-alkoxyphenyl)-1,3,4-oxadiazole-2-yl]pyridine and 1,3,5-trifluorotriiodobenzene. Electronic structure calculations show that the N(oxadiazole)⋯I interaction in the new synthon is as strong as the classic N(pyridine)⋯I interaction. Oxygen to sulfur atom subsitution on the oxadiazole ring results in a different supramolecular packing where the N(pyridine)⋯I interaction is favored, which could be rationalized by the changes in the molecular electrostatic potential predicted from the theoretical calculations.

010405 organic chemistryStereochemistrySynthonSupramolecular chemistryOxadiazoleGeneral ChemistryCrystal structureElectronic structure010402 general chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryHalogenPyridineGeneral Materials ScienceCrystEngComm
researchProduct

Synthesis of new terpyridine-like ligands based on triazolopyridines and benzotriazoles

2017

Herein, terpyridine triazole-based analogs bearing benzotriazoles or/and triazolopyridines are prepared via copper catalysis, where the arrangement of the nitrogen atoms is proven to be crucial to the spectroscopic properties of these ligands.

010405 organic chemistryTriazolechemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesCopperCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryPolymer chemistryMaterials ChemistryOrganic chemistryTerpyridineNew Journal of Chemistry
researchProduct

Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands

2018

Two oxalato-bridged dinuclear copper(II) complexes, [{Cu(Hdmpz)3}2(μ-ox)](ClO4)2·2H2O (1) and [{Cu(Htmpz)3}2(μ-ox)](ClO4)2·2H2O (2) (Hdmpz = 3,5-dimethyl-1H-pyrazole and Htmpz = 3,4,5-trimethyl-1H-pyrazole), have been synthesized and structurally and magnetically characterized. The crystal structures of 1 and 2 consist of asymmetric bis-bidentate μ-oxalatodicopper(II) complex cations with two short [Cu–O = 1.976(2) (1) and 1.973(2) Å (2)] and two long copper–oxygen bonds [Cu–O = 2.122(2) (1) and 2.110(2) Å (2)]. The environment at each CuII ion in 1 and 2 is closer to the trigonal bipyramidal geometry than to the square pyramidal [τ = 0.633 (1) and 0.711 (2)]. The magnetic properties of 1 a…

010405 organic chemistrychemistry.chemical_elementCrystal structurePyrazole ligandsPyrazole010402 general chemistry01 natural sciencesCopperSquare pyramidal molecular geometryAntiferromagnetic coupling0104 chemical sciencesIonCrystallographychemistry.chemical_compoundTrigonal bipyramidal molecular geometrychemistryMaterials ChemistryPhysical and Theoretical Chemistry
researchProduct