Search results for "B25"

showing 10 items of 28 documents

Sign-indefinite second order differential operators on finite metric graphs

2012

The question of self-adjoint realizations of sign-indefinite second order differential operators is discussed in terms of a model problem. Operators of the type $-\frac{d}{dx} \sgn (x) \frac{d}{dx}$ are generalized to finite, not necessarily compact, metric graphs. All self-adjoint realizations are parametrized using methods from extension theory. The spectral and scattering theory of the self-adjoint realizations are studied in detail.

Pure mathematicsSpectral theoryScatteringOrder (ring theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Type (model theory)Mathematics::Spectral TheoryDifferential operator34B45 (Primary) 47B25 34L05 35P20 35P25 81U15 (Secondary)Mathematics - Spectral TheoryMetric (mathematics)FOS: MathematicsScattering theorySpectral Theory (math.SP)Mathematical PhysicsMathematicsSign (mathematics)
researchProduct

Radial Maximal Function Characterizations of Hardy Spaces on RD-Spaces and Their Applications

2009

Let ${\mathcal X}$ be an RD-space with $\mu({\mathcal X})=\infty$, which means that ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces $H^p_{\rm at}(\{\mathcal X})$ of Coifman and Weiss for $p\in(n/(n+1),1]$ via the radial maximal function, where $n$ is the "dimension" of ${\mathcal X}$, and the range of index $p$ is the best possible. This completely answers the question proposed by Ronald R. Coifman and Guido Weiss in 1977 in this setting, and improves on a deep result of Uchiyama in 1980 on an Ahlfors 1-regular space and a recent result of Loukas Grafakos…

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics42B30 (Primary) 42B25 (Secondary) 42B35Functional Analysis (math.FA)
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

Frank H. Knight on social values in economic consumption: an archival note

2020

We reproduce an unpublished address on “Social Values in Economic Consumption” which Knight prepared for a SSRC Conference in June 1931. This material sheds new light on Knight in two respects. First, anticipating what is known as the relative income hypothesis, Knight indicated that a general increase in income, not only leaves the individual’s relative position in society unaltered but makes her/his situation worse off due to the peculiar characteristics of the market for “personal services.” Second, this address provides further evidence of how, in spite of some substantial methodological differences, Knight’s research interests converged with those of the institutionalists.

Consumption (economics)Relative incomeGeneral Arts and HumanitiesEconomics Econometrics and Finance (miscellaneous)Social value orientationsHistory and Philosophy of ScienceSettore SECS-P/04 - Storia Del Pensiero EconomicoInstitutionalismEconomic historyEconomicsKnightB25Frank H. Knightinstitutionalismconsumptionrelative incomeD31The European Journal of the History of Economic Thought
researchProduct

Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

2017

We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

Transverse instabilitymedia_common.quotation_subjectFOS: Physical sciences35Q53 (Primary) 76B15 76B25 35B35 35P15 (Secondary)Pattern Formation and Solitons (nlin.PS)01 natural sciencesInstabilityMathematics - Analysis of PDEsgeneralized solitary wavesdispersive equationsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Spectral analysistransverse stability0101 mathematicsperiodic wavesNonlinear Sciences::Pattern Formation and SolitonsMathematical Physicsmedia_commonPhysicsApplied Mathematics010102 general mathematicsMathematical analysisOrder (ring theory)Mathematical Physics (math-ph)InfinityNonlinear Sciences - Pattern Formation and Solitons010101 applied mathematicsClassical mechanicsNonlinear Sciences::Exactly Solvable and Integrable SystemsLine (geometry)Mechanical waveAnalysisLongitudinal waveAnalysis of PDEs (math.AP)
researchProduct

The forgotten mathematical legacy of Peano

2019

International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.

PeanoPeano's axioms of arithmeticPeano's counterexamplesWeierstrass maximum theoremabstract measuresGeneral MathematicsClosure (topology)tangencyinterioranti-distributive familiesfoundationdefinitions by abstractionlinear differential equationsaxiom of choiceLogical conjunctionPeano axiomsproofFormal languageAxiom of choiceMSC: Primary 01A55 01A6003-03 26-03 28-03 34-03 54-03; Secondary15A75 26A03 26A2426B25 26B05 28A1228A15 28A75.affine exterior algebra[MATH]Mathematics [math]reduction formulaeMathematicsnonlinear differential equationsoptimality conditionsdifferentiation of measuressweeping-tangent theoremPeano's axioms of geometryPeano's filling curvereduction of mathematics to setssurface areaclosuremean value theoremDirichlet functionNonlinear differential equationssubtangentsEpistemologymeasure theoryplanar measurelower and upper limits of setsdistributive familiescompactnessmathematical definitions1886 existence theoremdifferentiabilityDissertationes Mathematicae
researchProduct

Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces

2013

Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.

Pure mathematicsGeneral MathematicsMetric measure spaceSpace (mathematics)Triebel–Lizorkin spaceMeasure (mathematics)Triebel-Lizorkin spaceFOS: Mathematics46E35Birnbaum–Orlicz spaceLp spaceBesov spacefractional Sobolev spaceMathematicsMathematics::Functional Analysista111Mathematical analysisFractional Sobolev spaceFunctional Analysis (math.FA)Fractional calculusMathematics - Functional Analysismetric measure space42B25 46E35fractional maximal functionBesov spaceInterpolation spaceFractional maximal function42B25
researchProduct

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

2019

Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…

Pure mathematicsInequalitymedia_common.quotation_subject01 natural sciencesConvexitysymbols.namesakeMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaHadamard transformHermite–Hadamard inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Hermite-Hadamard inequality subharmonic functions convexity.0101 mathematicsComputingMilieux_MISCELLANEOUSsubharmonic functionsmedia_commonMathematicsSubharmonic functionHermite polynomialsconvexity010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Mathematics - Functional AnalysisMSC : 26B25 28A75 31A05 31B05 35B50Mathematics::LogicHermite-Hadamard inequalityDifferential geometryMathematics - Classical Analysis and ODEsFourier analysissymbols010307 mathematical physicsGeometry and TopologyThe Journal of Geometric Analysis
researchProduct

The variation of the maximal function of a radial function

2017

We study the problem concerning the variation of the Hardy-Littlewood maximal function in higher dimensions. As the main result, we prove that the variation of the non-centered Hardy-Littlewood maximal function of a radial function is comparable to the variation of the function itself.

Mathematics::Functional Analysis42B25 46E35 26A45maximal functionGeneral Mathematicsta111010102 general mathematicsMathematics::Classical Analysis and ODEsradial functionharmoninen analyysi01 natural sciences010101 applied mathematicsCombinatoricsRadial functionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Maximal operatorMaximal function0101 mathematicsfunktionaalianalyysi42B25Variation (astronomy)26A45MathematicsArkiv för Matematik
researchProduct

Self-improvement of weighted pointwise inequalities on open sets

2020

We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes of $p$-Poincar\'e and $p$-Hardy weights for an open set $\Omega\subset X$, where $X$ is a metric measure space. We also apply the self-improvement of weighted pointwise Hardy inequalities in connection with usual integral versions of Hardy inequalities.

Pure mathematicsPrimary 35A23 Secondary 42B25 31E05Inequalitymedia_common.quotation_subjectMathematics::Classical Analysis and ODEsOpen setSpace (mathematics)Measure (mathematics)Mathematics - Analysis of PDEsmetrinen avaruusClassical Analysis and ODEs (math.CA)FOS: Mathematicspointwise Hardy inequalitymedia_commonMathematicsPointwiseMathematics::Functional AnalysisSelf improvementmetric spaceweightConnection (mathematics)Hardyn epäyhtälöMathematics - Classical Analysis and ODEsself-improvementMetric (mathematics)maximal operatorAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct