Search results for "BACTERIA"

showing 10 items of 4919 documents

Insect Vectors (Hemiptera: Cixiidae) and Pathogens Associated with the Disease Syndrome “Basses Richesses” of Sugar Beet in France

2019

International audience; The syndrome “basses richesses” (SBR) is a disease of sugar beet in eastern France associated with two phloem-restricted, nonculturable plant pathogens: a stolbur phytoplasma and a γ-3 proteobacterium, here called SBR bacterium. Three planthopper (Hemiptera: Cixiidae) species were found to live near and within sugar beet fields in eastern France: Cixius wagneri, Hyalesthes obsoletus, and Pentastiridius leporinus. The role of these planthoppers in spreading the two pathogens to sugar beet was studied. Based on its abundance and high frequency of infection with the SBR bacterium, P. leporinus was considered to be the economic vector of SBR disease. C. wagneri, the prim…

0106 biological sciencesBASSES RICHESSES SYNDROME OF SUGAR BEETHomopteraEXPERIMENTAL TRANSMISSIONCIXIIDAEPlant Science01 natural sciencesHEMIPTERADETECTION03 medical and health sciencesPlanthopperBotanySugarPOLYMERASE CHAIN REACTION RESTRICTED FRAGMENT LENGH POLYMORPHISM030304 developmental biology2. Zero hunger0303 health sciencesbiologyPHLOEM LIMITED BACTERIAfungifood and beveragesLeporinusbiology.organism_classificationCixiidae[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyHYALESTHES OBSOLETUSINSECTEGAMMA-3-PROTEOBACTERIAPhytoplasmaSTOLBUR PHYTOPLASMAVECTORSSugar beetCIXIUS WAGNERICHARACTERIZATIONAgronomy and Crop ScienceConvolvulusPENTASTIRIDIUS LEPORINUS010606 plant biology & botany
researchProduct

Periphyton support for littoral secondary production in a highly humic boreal lake

2016

Steep stratification and poor light penetration in highly humic lakes typically restrict oxygenated littoral areas to narrow lake margins. However, in some instances, surrounding floating vegetation mats can sustain highly productive periphyton and more diverse invertebrate communities than pelagic areas. Little is known about how these littoral food webs function or the extent to which the pelagic and littoral food webs are coupled. We added 15N-labeled ammonium nitrate to the floating moss mat surrounding the littoral zone of Mekkojärvi, a small highly humic and fishless lake in southern Finland. Our goal was to increase the δ15N values of periphyton to investigate the diets of littoral i…

0106 biological sciencesC-13 ADDITIONPOLYHUMIC LAKEAquatic ScienceAQUATIC FOOD WEBSlittoral invertebrates010603 evolutionary biology01 natural sciencesbenthic algaeCARBONMETHANESTABLE-ISOTOPESECOSYSTEMSLittoral zonePeriphytonEcology Evolution Behavior and SystematicsInvertebrateIsotope analysisPerchEcologybiologyEcologystable-isotope analysis010604 marine biology & hydrobiologyPelagic zoneδ15Nisotope additionsbiology.organism_classificationBorealmethane-oxidizing bacteriaCONSUMER PRODUCTIONEnvironmental scienceta1181BENTHIC PATHWAYSTERRESTRIAL ORGANIC-MATTERFreshwater Science
researchProduct

Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini).

2009

International audience; Like other plant sap-sucking insects, planthoppers within the family Cixiidae (Insecta: Hemiptera: Fulgoromorpha) host a diversified microbiota. We report the identification and first molecular characterization of symbiotic bacteria in cixiid planthoppers (tribe: Pentastirini). Using universal eubacterial primers we first screened the eubacterial 16S rRNA sequences in Pentastiridius leporinus (Linnaeus) with PCR amplification, cloning, and restriction fragment analysis. We identified three main 16S rRNA sequences that corresponded to a Wolbachia bacterium, a plant pathogenic bacterium, and a novel gammaproteobacterial symbiont. A fourth bacterial species affiliated w…

0106 biological sciencesCIXIIDAEZoology010603 evolutionary biology01 natural sciencesMicrobiologyHemiptera03 medical and health sciencesRNA Ribosomal 16SBotanyAnimalsSymbiosisEcology Evolution Behavior and SystematicsPhylogeny030304 developmental biology0303 health sciencesbiologyHost (biology)fungifood and beveragesBacteroidetesBacteriomebiochemical phenomena metabolism and nutritionLeporinusbiology.organism_classification16S ribosomal RNACixiidaeHemipteraBiological Evolution[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyFULGOROMORPHAINSECTACandidatusMetagenomeFemalePENTASTIRINIGammaproteobacteriaEnvironmental microbiology
researchProduct

The Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II

2019

ABC proteins are primary-active transporters that require the binding and hydrolysis of ATP to transport substrates across the membrane. Since the first report of an ABCC2 transporter as receptor of Cry1A toxins, the number of ABC transporters known to be involved in the mode of action of Cry toxins has increased. In Spodoptera exigua, a mutation in the SeABCC2 gene is described as genetically linked to resistance to the Bt-product XentariTM. This mutation affects an intracellular domain involved in ATP binding, but not the extracellular loops. We analyzed whether this mutation affects the role of the SeABCC2 as a functional receptor to Cry1A toxins. The results show that Sf21 cells express…

0106 biological sciencesCell SurvivalHealth Toxicology and Mutagenesislcsh:MedicineReceptors Cell SurfaceATP-binding cassette transporterSpodopteraSpodopteraToxicologymedicine.disease_causeBt resistance01 natural sciencesArticleCell LineHemolysin Proteins03 medical and health sciencesBacterial Proteinsmode of actionGTP-Binding ProteinsATP hydrolysismedicineAnimalsReceptor030304 developmental biology0303 health sciencesMutationBacillus thuringiensis ToxinsbiologyChemistryfungilcsh:Rheterologous expressionTransporterbiology.organism_classificationMultidrug Resistance-Associated Protein 2Cell biologyEndotoxins010602 entomologyCyclic nucleotide-binding domainSf21 cellstruncated transporterInsect ProteinsHeterologous expressionMultidrug Resistance-Associated ProteinsToxins
researchProduct

Larger cell or colony size in winter, smaller in summer – a pattern shared by many species of Lake Kinneret phytoplankton

2017

We examined an 8.5-year record (2004-2012) of cell size data for phytoplankton species from Lake Kinneret, Israel, sampled weekly or at 2-week intervals and determined microscopically by the same person. Many of the species abundant enough to be counted year-round showed a typical seasonal cell size pattern that repeated annually: cell diameter was maximal in winter and minimal in summer. This pattern was shared by species from different taxonomic groups including cyanobacteria, chlorophyta, and dinoflagellates. Similarly, in colonial species of diatoms, chlorophyta, and cyanobacteria the number of cells per colony was larger in winter and smaller in summer. We postulated that the seasonal …

0106 biological sciencesCell diameterCyanobacteriabiologyEcology010604 marine biology & hydrobiologytemperaturesinking velocityChlorophytachlorophytaAquatic Sciencebiology.organism_classificationdinoflagellate010603 evolutionary biology01 natural sciencescyanobacteriaCell sizeReynolds numberseasonal Stokes' equationPhytoplanktonSettore BIO/03 - Botanica Ambientale E ApplicataWater densitychlorophyta; cyanobacteria; dinoflagellates; Reynolds number; sinking velocity; seasonal Stokes' equation; temperatureTaxonomic rankWater Science and Technology
researchProduct

Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water.

2019

Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that…

0106 biological sciencesChromatography GasMicroorganismBioengineeringOil-adsorbing electrospun membranesSettore BIO/19 - Microbiologia Generale01 natural sciencesActinobacteria03 medical and health scienceschemistry.chemical_compoundAdsorptionBioremediation010608 biotechnologyHydrocarbonoclastic bacteria (HCB)Petroleum PollutionMolecular BiologyEnvironmental Restoration and Remediation030304 developmental biology0303 health sciencesbiologyWater PollutionBiofilmSettore ING-IND/34 - Bioingegneria IndustrialeGeneral MedicineBiodegradationContaminationbiology.organism_classificationActinobacteriaBiodegradation EnvironmentalPetroleumchemistryEnvironmental chemistryBiofilmsPolycaprolactoneBiodegrading biofilmsAdsorptionBioremediationGammaproteobacteriaBiotechnologyNew biotechnology
researchProduct

Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies

2017

The interest in improving the yield and productivity values of relevant microbial fermentations is an increasingly important issue for the scientific community. Therefore, several strategies have been tested for the stimulation of microbial growth and manipulation of their metabolic behavior. One promising approach involves the performance of fermentative processes during non-conventional conditions, which includes high pressure (HP), electric fields (EF) and ultrasound (US). These advanced technologies are usually applied for microbial inactivation in the context of food processing. However, the approach described in this study focuses on the use of these technologies at sub-lethal levels,…

0106 biological sciencesComputer scienceFood HandlingContext (language use)Bacterial Physiological Phenomena01 natural sciencesApplied Microbiology and BiotechnologyFight-or-flight response0404 agricultural biotechnologyElectricity010608 biotechnologyPressure[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringMetabolic StressBacteriabusiness.industry[SDE.IE]Environmental Sciences/Environmental EngineeringTemperature04 agricultural and veterinary sciencesGeneral Medicine040401 food scienceMicrobial inactivationBiotechnologyHigh pressureFermentationFood processingFermentationStress conditionsBiochemical engineeringbusinessBiotechnology
researchProduct

Towards food, feed and energy crops mitigating climate change

2011

Agriculture is an important source of anthropogenic emissions of the greenhouse gases (GHG), methane (CH 4 ) and nitrous oxide (N 2 O), and crops can affect the microbial processes controlling these emissions in many ways. Here, we summarize the current knowledge of plant–microbe interactions in relation to the CH 4 and N 2 O budgets and show how this is promoting new generations of crop cultivars that have the potential to mitigate GHG emissions for future agricultural use. The possibility of breeding low GHG-emitting cultivars is a paradigm shift towards sustainable agriculture that balances climate change and food and bioenergy security.

0106 biological sciencesCrops AgriculturalConservation of Natural ResourcesClimate ChangePlant ExudatesNitrous OxideClimate changePlant ScienceBiology7. Clean energy01 natural scienceskyoto protocolnitrogenCarbon CycleSoilBioenergyemission in agricultureSustainable agriculture[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySoil Microbiology2. Zero hungerFood securityBacteriabusiness.industryAgroforestrymicrobial processmethanen2o04 agricultural and veterinary sciences15. Life on landNitrogen Cycleghg emissionEnergy crop13. Climate actionAgriculturegreenhouse gasGreenhouse gasWetlandsSustainabilityRhizosphere040103 agronomy & agriculture0401 agriculture forestry and fisheriesbusiness010606 plant biology & botany
researchProduct

Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

2010

Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conf…

0106 biological sciencesCrops AgriculturalInsecticidesHelicoverpa punctigeraScienceUNESCO::CIENCIAS DE LA VIDA::Biología de insectos (Entomología)::Entomología generalBacillus thuringiensisBacterial ProteinGenetically modified cropsHelicoverpa armigera01 natural sciencesMicrobiologyLepidoptera genitaliaInsecticide Resistance03 medical and health sciencesBacterial ProteinsBacillus thuringiensisBotanyBacillus thuringiensiBiotechnology/Applied MicrobiologyAnimalsMode of actionBiotechnology/Plant BiotechnologyHelicoverpaInsecticide030304 developmental biology0303 health sciencesMultidisciplinaryBinding SitesbiologyAnimalQfungiBinding SiteRbiology.organism_classificationBinding site alterationHelicoverpa speciesLepidoptera010602 entomologyCry1AcBacillus thuringiensis; Binding site alteration; Helicoverpa speciesMedicine:CIENCIAS DE LA VIDA::Biología de insectos (Entomología)::Entomología general [UNESCO]Plant Biology/Agricultural BiotechnologyResearch ArticleProtein BindingPLoS ONE
researchProduct

Insecticidal Activity of Bacillus thuringiensis Proteins against Coleopteran Pests

2020

Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and…

0106 biological sciencesCrops AgriculturalOrder ColeopteraHealth Toxicology and Mutagenesismedia_common.quotation_subjectBacillus thuringiensis proteinsBacillus thuringiensislcsh:MedicineInsectGenetically modified cropsReviewToxicologyInsecticidal activity01 natural sciencesinsecticidal activityLepidoptera genitalia03 medical and health sciencesHemolysin Proteinsmode of actionBacillus thuringiensisBotanyAnimalsstructureMode of actionPest Control Biologicalcoleopteran pests030304 developmental biologymedia_common0303 health sciencesbiologyBacillus thuringiensis Toxinslcsh:RfungiStructurebiology.organism_classificationPlants Genetically ModifiedColeopteraEndotoxins010602 entomologyBiological Control AgentsMode of actionColeopteran pests<i>Bacillus thuringiensis</i> proteinsBacteriaToxins
researchProduct