Search results for "BANACH SPACE"

showing 10 items of 281 documents

Unconditional Basis and Gordon–Lewis Constants for Spaces of Polynomials

2001

Abstract No infinite dimensional Banach space X is known which has the property that for m ⩾2 the Banach space of all continuous m -homogeneous polynomials on X has an unconditional basis. Following a program originally initiated by Gordon and Lewis we study unconditionality in spaces of m -homogeneous polynomials and symmetric tensor products of order m in Banach spaces. We show that for each Banach space X which has a dual with an unconditional basis ( x * i ), the approximable (nuclear) m -homogeneous polynomials on X have an unconditional basis if and only if the monomial basis with respect to ( x * i ) is unconditional. Moreover, we determine an asymptotically correct estimate for the …

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsPolynomialBanach spacepolynomialBasis (linear algebra)Banach spaceMonomial basisunconditional basisUnconditional convergenceOrder (group theory)Interpolation spaceSymmetric tensorsymmetric tensor productGordon–Lewis propertyAnalysisMathematicsJournal of Functional Analysis
researchProduct

Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings

2006

Abstract It is shown that if the modulus Γ X of nearly uniform smoothness of a reflexive Banach space satisfies Γ X ′ ( 0 ) 1 , then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsUniformly nonsquare spacesApproximation propertyEberlein–Šmulian theoremBanach spaceNonexpansive mappingsUniformly convex spaceBanach manifoldFixed-point propertyNearly uniform smoothnessFixed pointsReflexive spaceLp spaceAnalysisMathematicsJournal of Functional Analysis
researchProduct

On ideals of polynomials and multilinear mappings between Banach spaces

2003

It is shown that for every quasi-normed ideal ${\cal Q}$ of n-homogeneous continuous polynomials between Banach spaces there is a quasi-normed ideal ${\cal A}$ of n-linear continuous mappings ${\cal A}$ such that $q \in {\cal Q}$ if and only if the associated n-linear mapping $\check{q}$ of q is in ${\cal A}$.

Discrete mathematicsMultilinear mapIdeal (set theory)General MathematicsBanach spaceMathematicsArchiv der Mathematik
researchProduct

A multilinear Lindenstrauss theorem

2006

Abstract We show that the set of N -linear mappings on a product of N Banach spaces such that all their Arens extensions attain their norms (at the same element) is norm dense in the space of all bounded N -linear mappings.

Discrete mathematicsMultilinear mapMathematics::Functional AnalysisEberlein–Šmulian theoremBanach spaceBanach manifoldPolynomialsBanach spacesBounded functionInterpolation spaceLp spaceBounded inverse theoremMultilinear mappingsAnalysisMathematicsJournal of Functional Analysis
researchProduct

Summability and estimates for polynomials and multilinear mappings

2008

Abstract In this paper we extend and generalize several known estimates for homogeneous polynomials and multilinear mappings on Banach spaces. Applying the theory of absolutely summing nonlinear mappings, we prove that estimates which are known for mappings on l p spaces in fact hold true for mappings on arbitrary Banach spaces.

Discrete mathematicsMultilinear mapPure mathematicsMathematics::Functional AnalysisMathematics(all)General MathematicsBanach spaceAbsolutely summingNonlinear systemCotypeHomogeneousEstimatesMultilinear mappingsMathematicsIndagationes Mathematicae
researchProduct

The fixed point property for mappings admitting a center

2007

Abstract We introduce a class of nonlinear continuous mappings in Banach spaces which allow us to characterize the Banach spaces without noncompact flat parts in their spheres as those that have the fixed point property for this type of mapping. Later on, we give an application to the existence of zeroes for certain kinds of accretive operators.

Discrete mathematicsNonlinear systemClass (set theory)Applied MathematicsBanach spaceCenter (group theory)Fixed pointType (model theory)Fixed-point propertyAnalysisNonlinear operatorsMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Property (gab) through localized SVEP

2015

In this article we study the property (gab) for a bounded linear operator T 2 L(X) on a Banach space X which is a stronger variant of Browder's theorem. We shall give several characterizations of property (gab). These characterizations are obtained by using typical tools from local spectral theory. We also show that property (gab) holds for large classes of operators and prove the stability of property (gab) under some commuting perturbations. 2010 Mathematics Subject Classication. Primary 47A10, 47A11; Secondary 47A53, 47A55.

Discrete mathematicsNumerical AnalysisPure mathematicsControl and OptimizationSpectral theoryProperty (philosophy)Property (gab) local spectral subspaces Browder type theorems.Applied Mathematics010102 general mathematicsBanach space010103 numerical & computational mathematics01 natural sciencesStability (probability)Bounded operatorSettore MAT/05 - Analisi Matematica0101 mathematicsAnalysisMathematics
researchProduct

Lineability of non-differentiable Pettis primitives

2014

Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).

Discrete mathematicsPettis integralMathematics::Functional AnalysisIntegrable systemGeneral MathematicsBanach space46G10 28B05Functional Analysis (math.FA)Mathematics - Functional AnalysisSet (abstract data type)Dvoretzky's theoremFOS: MathematicsLocally integrable functionDifferentiable functionPettis Integral nowhere differentiable Dvoretzky's theorem lineable spaceableMathematicsVector spaceMonatshefte für Mathematik
researchProduct

On the equivalence of McShane and Pettis integrability in non-separable Banach spaces

2009

Abstract We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelof determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.

Discrete mathematicsPettis integralPure mathematicsMcShane integralIntegrable systemApplied MathematicsBanach spaceProjectional resolution of the identitySeparable spaceAbsolutely summing operatorScalarly null functionWeakly Lindelöf determined Banach spacePettis integralEquivalence (measure theory)Continuum hypothesisAnalysisMathematicsProperty (M)Journal of Mathematical Analysis and Applications
researchProduct

Pietsch's factorization theorem for dominated polynomials

2007

Abstract We prove that, like in the linear case, there is a canonical prototype of a p -dominated homogeneous polynomial through which every p -dominated polynomial between Banach spaces factors.

Discrete mathematicsPolynomialBanach spaceTensor product of Hilbert spacesDominated polynomialsAbsolutely summing linear operatorsSymmetric tensor productsymbols.namesakeSymmetric polynomialFactorization of polynomialsHomogeneous polynomialWeierstrass factorization theoremsymbolsElementary symmetric polynomialAnalysisMathematicsJournal of Functional Analysis
researchProduct