Search results for "BANACH SPACE"
showing 10 items of 281 documents
Unconditional Basis and Gordon–Lewis Constants for Spaces of Polynomials
2001
Abstract No infinite dimensional Banach space X is known which has the property that for m ⩾2 the Banach space of all continuous m -homogeneous polynomials on X has an unconditional basis. Following a program originally initiated by Gordon and Lewis we study unconditionality in spaces of m -homogeneous polynomials and symmetric tensor products of order m in Banach spaces. We show that for each Banach space X which has a dual with an unconditional basis ( x * i ), the approximable (nuclear) m -homogeneous polynomials on X have an unconditional basis if and only if the monomial basis with respect to ( x * i ) is unconditional. Moreover, we determine an asymptotically correct estimate for the …
Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings
2006
Abstract It is shown that if the modulus Γ X of nearly uniform smoothness of a reflexive Banach space satisfies Γ X ′ ( 0 ) 1 , then every bounded closed convex subset of X has the fixed point property for nonexpansive mappings. In particular, uniformly nonsquare Banach spaces have this property since they are properly included in this class of spaces. This answers a long-standing question in the theory.
On ideals of polynomials and multilinear mappings between Banach spaces
2003
It is shown that for every quasi-normed ideal ${\cal Q}$ of n-homogeneous continuous polynomials between Banach spaces there is a quasi-normed ideal ${\cal A}$ of n-linear continuous mappings ${\cal A}$ such that $q \in {\cal Q}$ if and only if the associated n-linear mapping $\check{q}$ of q is in ${\cal A}$.
A multilinear Lindenstrauss theorem
2006
Abstract We show that the set of N -linear mappings on a product of N Banach spaces such that all their Arens extensions attain their norms (at the same element) is norm dense in the space of all bounded N -linear mappings.
Summability and estimates for polynomials and multilinear mappings
2008
Abstract In this paper we extend and generalize several known estimates for homogeneous polynomials and multilinear mappings on Banach spaces. Applying the theory of absolutely summing nonlinear mappings, we prove that estimates which are known for mappings on l p spaces in fact hold true for mappings on arbitrary Banach spaces.
The fixed point property for mappings admitting a center
2007
Abstract We introduce a class of nonlinear continuous mappings in Banach spaces which allow us to characterize the Banach spaces without noncompact flat parts in their spheres as those that have the fixed point property for this type of mapping. Later on, we give an application to the existence of zeroes for certain kinds of accretive operators.
Property (gab) through localized SVEP
2015
In this article we study the property (gab) for a bounded linear operator T 2 L(X) on a Banach space X which is a stronger variant of Browder's theorem. We shall give several characterizations of property (gab). These characterizations are obtained by using typical tools from local spectral theory. We also show that property (gab) holds for large classes of operators and prove the stability of property (gab) under some commuting perturbations. 2010 Mathematics Subject Classication. Primary 47A10, 47A11; Secondary 47A53, 47A55.
Lineability of non-differentiable Pettis primitives
2014
Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).
On the equivalence of McShane and Pettis integrability in non-separable Banach spaces
2009
Abstract We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelof determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.
Pietsch's factorization theorem for dominated polynomials
2007
Abstract We prove that, like in the linear case, there is a canonical prototype of a p -dominated homogeneous polynomial through which every p -dominated polynomial between Banach spaces factors.