Search results for "BARYOGENESIS"

showing 6 items of 96 documents

Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations

2014

We propose a mechanism for baryogenesis from particle decays or annihilations that can work at the TeV scale. Some heavy particles annihilate or decay into a heavy sterile neutrino N (with M > 0.5 TeV) and a "light" one ��(with m << 100 GeV), generating an asymmetry among the two helicity degrees of freedom of ��. This asymmetry is partially transferred to Standard Model leptons via fast Yukawa interactions and reprocessed into a baryon asymmetry by the electroweak sphalerons. We illustrate this mechanism in a WIMPy baryogenesis model where the helicity asymmetry is generated in the annihilation of dark matter. This model connects the baryon asymmetry, dark matter, and neutrino mas…

PhysicsSterile neutrinoParticle physicsNuclear and High Energy Physicsmedia_common.quotation_subjectDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaAsymmetryStandard ModelBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryHigh Energy Physics::ExperimentNeutrinomedia_commonLepton
researchProduct

Long-lived particles at the energy frontier: the MATHUSLA physics case

2019

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …

Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelHEAVY MAJORANA NEUTRINOSGeneral Physics and Astronomy01 natural sciencesMathematical SciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NaturalnessCERN LHC Coll: upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: masslong-lived particlesPhysicsLarge Hadron Collidernew physicsCMShierarchy problemneutrinosHierarchy problemhep-phATLASDARK-MATTER SEARCHESCOSMIC-RAYSmissing-energyHigh Energy Physics - PhenomenologyLarge Hadron ColliderPhysical SciencesNeutrinoLIGHT HIGGS-BOSONParticle Physics - ExperimentParticle physicsGeneral PhysicsSTERILE NEUTRINOSPHI-MESON DECAYSnucleosynthesis: big bangDark matterFOS: Physical sciencesEXTENSIVE AIR-SHOWERSdark matterVECTOR GAUGE BOSON0103 physical sciences010306 general physicsnumerical calculationsParticle Physics - PhenomenologyLEFT-RIGHT SYMMETRYMissing energyhep-exbackgroundBaryogenesisdark matter: detectortriggersensitivityBaryogenesis[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]simplified modelsDOUBLE-BETA DECAYparticle: long-lived
researchProduct

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spalla…

2021

Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…

baryon number violation; feebly interacting particles; European Spallation Source; baryogenesisPhysics beyond the Standard ModelNuclear TheoryEXPERIMENTAL LIMITfeebly interacting particlesbaryogenesisAntineutron01 natural sciencesSubatomär fysikANTIPROTON ANNIHILATIONn: oscillationSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentsterilePhysicsMIRROR MATTERnew physicsanti-nddc:Antimatterbaryon: asymmetryproposed experimentDAMA ANNUAL MODULATIONNuclear and High Energy PhysicsParticle physicsAccelerator Physics and Instrumentation114 Physical sciencesBaryon asymmetrynuclear physics0103 physical sciencesDARK-MATTERmixingNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]TRANSITION OPERATORS010306 general physicsbaryon number: violationactivity report010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringMAJORANA NEUTRINOSsensitivitybaryon number violationBaryogenesisregenerationEuropean Spallation SourceUNIFIED PICTUREB-L SYMMETRYBaryon numberBARYON-NUMBER NONCONSERVATION
researchProduct

Momentum distributions of cosmic relics: Improved analysis

2022

We solve coupled momentum-dependent Boltzmann equations for the phase space distribution of cosmic relic particles, without resorting to approximations of assuming kinetic equilibrium or neglecting backscattering or elastic interactions. Our method is amendable to precision numerical computations. To test it, we consider two benchmark models where the momentum dependence of dark matter distribution function is potentially important: a real singlet scalar extension near the Higgs resonance and a sterile neutrino dark matter model with a singlet scalar mediator. The singlet scalar example shows that the kinetic equilibrium may hold surprisingly well even near sharp resonances. However, the in…

pimeä aineHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyneutriinotBaryogenesisFOS: Physical sciencesDark-matterkosmologia114 Physical sciencesAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review
researchProduct

Dark matter and baryogenesis in Higgs portal models

2016

This work focuses on two of the main issues in current understanding of particle physics described by the Standard Model. The Standard Model, despite of its success, is not complete. Existence of dark matter has been clearly verified, but its nature is unknown. Also, the baryon asymmetry in the Universe hints that the Standard Model has to be extended. In this thesis we study Higgs portal models which both contain dark matter candidates, and can provide for a successful production of the baryon asymmetry.

pimeä aineStandard Modelasymmetriahiukkasfysiikan standardimallibaryon asymmetryAstrophysics::Cosmology and Extragalactic Astrophysicsbaryogenesisbaryonigeneesidark matterbaryonit
researchProduct

Phenomenology of low-scale Seesaw Models

2016

All the observed particles are well accommodated in the Standard Model, together with the basic forces. However, there are both experimental and theoretical hints that the Standard Model can not be a complete theory and that New Physics is needed. Some of the theoretical problems are: i) The flavor-puzzle, i.e., why are there three copies of particles differing only by their mass. Most of the free parameters in the Standard Model are linked to this puzzle. They have been measured, but their values do not follow any clear pattern and their origin remains elusive. ii) The strong CP problem, that is, why the CP symmetry is conserved in the strong interactions in the Standard Model, which is no…

sterile neutrino:FÍSICA [UNESCO]High Energy Physics::Phenomenologylow scale seesawUNESCO::FÍSICAbaryogenesiscosmology
researchProduct