Search results for "BESS"
showing 10 items of 144 documents
Generation of accelerating beams using nano-scale metallic circular gratings
2014
Spatially accelerating beams that are solutions to the Maxwell equations may propagate along incomplete circular trajectories, after which diffraction broadening takes over and the beams spread out. In this paper we report on numerical simulations that show the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced by a diffractive optical element that consists of a non-planar sub-wavelength grating enabling a Bessel signature.
Inductance Calculations for Circular Coils of Rectangular Cross Section and Parallel Axes Using Bessel and Struve Functions
2010
A simple method for calculating the mutual and self inductances of circular coils of rectangular cross section and parallel axes is presented. The method applies to non-coaxial as well as coaxial coils, and self inductance can be calculated by considering two identical coils which coincide in space. It is assumed that current density is homogeneous in the coil windings. The inductances are given in terms of one-dimensional integrals involving Bessel and Struve functions, and an exact solution is given for one of these integrals. The remaining terms can be evaluated numerically to great accuracy using computer packages such as Mathematica. The method is compared with other exact methods for …
Soliton topology versus discrete symmetry in optical lattices
2005
We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general ``charge rule'' using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing in the case of Bessel lattices allows us to derive also a overall stability rule for the allowed vortex solitons.
Plenary talk - non coaxial force and inductance calculations for bitter coils and coils with uniform radial current distributions
2011
Recently the Bessel function approach to calculating the magnetic fields of coils has been used to calculate the mutual inductance and the force between two non coaxial thick cylindrical coils with parallel axes and uniform radial current distributions. This method can also be applied to calculate the force and inductance between an ordinary coil and a Bitter coil, or between two bitter coils, not necessarily coaxial. Bitter coils give a simpler case of the method, and it is possible to solve analytically for the magnetic field of a bitter disk.
Exact solutions for the mutual inductance of circular coils and elliptic coils
2012
An exact solution is presented for the mutual inductance between general noncoaxial thin circular and elliptic coils with parallel axes. The thin coil solution is given as an angular integral of an elliptic integral expression. In addition, for the coaxial case, an exact solution is given for the mutual inductance of a thick circular coil and a thick elliptic coil. The elliptic coil is such that the coil thickness is the same along both elliptic semi-axes. The thick coil solution is given as an integral of an expression involving Bessel and Struve functions. Extensive numerical results for sample geometries are given for both solutions, which are cross checked against each other in the limi…
Non coaxial force and inductance calculations for bitter coils and coils with uniform radial current distributions
2011
Recently the Bessel function approach to calculating the magnetic fields of coils has been used to calculate the mutual inductance and the force between two non coaxial thick cylindrical coils with parallel axes and uniform radial current distributions. This method can also be applied to calculate the force and inductance between an ordinary coil and a Bitter coil, or between two bitter coils, not necessarily coaxial. Bitter coils give a simpler case of the method, and it is possible to solve analytically for the magnetic field of a bitter disk.
THEORETISGHE UNTERSUCHUNGEN UBER DEN EINFLUSS DER VERWITTERUNGSSCHICHT AUF DAS SPEKTRUM ELASTISCHER WELLEN IN DER REFLEXIONSSEISMIK
1957
The following assumptions are made in the mathematical treatment of the problem. Below a plane earth's surface there is a three-layered elastic medium the interfaces of which are parallel to the earth's surface. The uppermost layer represents the weathered layer in which the velocity of propagation of seismic waves increases linearly with depth. The two lower layers, the so-called intermediate layer and the substratum each have a constant velocity. The surface of the earth is acted on simultaneously by a normal pressure N in the form of a Heaviside pulse. The seismic wave thus generated is propagated through the elastic media. The aim of the investigation is to study the shape of the wave 1…
Plasmon-driven Bessel beams
2012
We report on subwavelength diffraction-free beams with grazing propagation in metal-dielectric devices. The nondiffracting beams are resonantly transmitted through the nanostructured medium leading to light confinement and wave amplification around the beam axis.
Three-dimensional field distribution in the focal region of low-Fresnel-number axicons.
2006
Three-dimensional intensity and phase distributions generated by microaxicons are evaluated in the low-Fresnel-number regime. Apertured and nonapertured conical wavefronts may generate transverse patterns with notable deviations from the expected nondiffracting Bessel beam. First-order analytical expressions are proposed for the evaluation of the wave field produced by axicons of different Fresnel number in the focal region.
Four-wave mixing control in the filamentation of ultrafast Bessel beams via longitudinal intensity-shaping
2017
International audience; Bessel beams exploit conical energy flow to yield near-uniform intensity along a line focus which has been shown to be extremely attractive for laser processing in dielectrics. At high power, however, the nonlinear Kerr effect is known to induce significant oscillations of the on-axis intensity which is deleterious for machining applications. Here, we show through theory and numerical modelling how this problem can be understood and overcome by appropriate spatial phase shaping of the input profile. Our results also solve the longstanding problem related to the nonlinear Bessel beam dynamics seen at an air-dielectric interface.