Search results for "BINARIES"

showing 10 items of 191 documents

Spectral analysis of the low-mass X-ray pulsar 4U 1822-371: Reflection component in a high-inclination system

2021

Context. The X-ray source 4U 1822-371 is an eclipsing low-mass X-ray binary and X-ray pulsar, hosting a NS that shows periodic pulsations in the X-ray band with a period of 0.59 s. The inclination angle of the system is so high (80–85°) that in principle, it should be hard to observe both the direct thermal emission of the central object and the reflection component of the spectrum because they are hidden by the outer edge of the accretion disc. Despite the number of studies carried out on this source, many aspects such as the geometry of the system, its luminosity, and its spectral features are still debated. Aims. Assuming that the source accretes at the Eddington limit, the analysis perf…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsRadiusAstrophysics01 natural sciencesaccretion accretion disks stars: neutron stars: individual: 4U 1822-371 X-rays: binaries X-rays: general eclipsesLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary Science0103 physical sciencesEddington luminosityReflection (physics)symbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsX-ray pulsarEclipse
researchProduct

Detailed study of the X-ray and optical/UV orbital ephemeris of X1822-371

2011

Recent studies of the optical/UV and X-ray ephemerides of X1822-371 have found some discrepancies in the value of the orbital period derivative. Because of the importance of this value in constraining the system evolution, we comprehensively analyse all the available optical/UV/X eclipse times of this source to investigate the origin of these discrepancies. We collected all previously published X-ray eclipse times from 1977 to 2008, to which we added the eclipse time observed by Suzaku in 2006. This point is very important to cover the time gap between the last RXTE eclipse time (taken in 2003) and the most recent Chandra eclipse time (taken in 2008). Similarly we collected the optical/UV e…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-rayFOS: Physical sciencesAstronomy and Astrophysicsneutron X-rays: binaries X-rays: stars stars: individual: X1822-371 [stars]AstrophysicsDerivativeTime gapEphemerisOrbital period01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaCover (topology)Space and Planetary Sciencestars: neutron X-rays: binaries X-rays: stars stars: individual: X1822-3710103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaVariation (astronomy)010303 astronomy & astrophysicsEclipse
researchProduct

Spin down during quiescence of the fastest known accretion-powered pulsar

2010

We present a timing solution for the 598.89 Hz accreting millisecond pulsar, IGR J00291+5934, using Rossi X-ray Timing Explorer data taken during the two outbursts exhibited by the source on 2008 August and September. We estimate the neutron star spin frequency and we refine the system orbital solution. To achieve the highest possible accuracy in the measurement of the spin frequency variation experienced by the source in-between the 2008 August outburst and the last outburst exhibited in 2004, we re-analysed the latter considering the whole data set available. We find that the source spins down during quiescence at an average rate of ��dot_{sd}=(-4.1 +/- 1.2)E-15 Hz/s. We discuss possible …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)Gravitational waveAstrophysics::High Energy Astrophysical Phenomenagravitational waves stars: neutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetic fieldNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarQuadrupoleneutron stars: rotation pulsars: individual:IGR J00291+5934 X-rays: binaries [gravitational waves stars]Astrophysics - High Energy Astrophysical PhenomenaSpin-½
researchProduct

The discovery of the 401 Hz accreting millisecond pulsar IGR J17498-2921 in a 3.8 h orbit

2011

We report on the detection of a 400.99018734(1) Hz coherent signal in the Rossi X-ray Timing Explorer light curves of the recently discovered X-ray transient, IGR J17498-2921. By analysing the frequency modulation caused by the orbital motion observed between August 13 and September 8, 2011, we derive an orbital solution for the binary system with a period of 3.8432275(3) hr. The measured mass function, f(M_2, M_1, i)=0.00203807(8) Msun, allows to set a lower limit of 0.17 Msun on the mass of the companion star, while an upper limit of 0.48 Msun is set by imposing that the companion star does not overfill its Roche lobe. We observe a marginally significant evolution of the signal frequency …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLight curveSpectral lineNeutron starOrbitSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarOrbital motionAstrophysics::Solar and Stellar AstrophysicsRoche lobeAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenaneutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binaries [stars]stars: neutron stars: rotation pulsars: individual:IGR J17498-2921 X-rays: binariesNoise (radio)
researchProduct

A relativistically smeared spectrum in the neutron star X-ray binary 4U 1705−44: looking at the inner accretion disc with X-ray spectroscopy

2009

Iron emission lines at 6.4-6.97 keV, identified with fluorescent Kalpha transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper we present a recent XMM observation of the X-ray burster 4U 1705-44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; th…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sightAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusCompact starline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-ray: binaries X-rays: generalNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radiusAstrophysics::Galaxy AstrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

The Chameleon on the branches: spectral state transition and dips in NGC 247 ULX-1

2021

Soft Ultra-Luminous X-ray (ULXs) sources are a subclass of the ULXs that can switch from a supersoft spectral state, where most of the luminosity is emitted below 1 keV, to a soft spectral state with significant emission above 1 keV. In a few systems, dips have been observed. The mechanism behind this state transition and the dips nature are still debated. To investigate these issues, we obtained a long XMM-Newton monitoring campaign of a member of this class, NGC 247 ULX-1. We computed the hardness-intensity diagram for the whole dataset and identified two different branches: the normal branch and the dipping branch, which we study with four and three hardness-intensity resolved spectra, r…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPhotosphereAbsorption spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesOccultationX-rays: individual: NGC 247 ULX-1Spectral lineLuminosityX-rays: binariesSpace and Planetary Science0103 physical sciencesThermalBlack-body radiation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Testing reflection features in 4U 1705-44 with XMM-Newton, BeppoSAX, and RXTE in the hard and soft states

2012

We use data of the bright atoll source 4U 1705-44 taken with XMM-Newton, BeppoSAX and RXTE both in the hard and in the soft state to perform a self-consistent study of the reflection component in this source. Although the data from these X-ray observatories are not simultaneous, the spectral decomposition is shown to be consistent among the different observations, when the source flux is similar. We therefore select observations performed at similar flux levels in the hard and soft state in order to study the spectral shape in these two states in a broad band (0.1-200 keV) energy range, with good energy resolution, and using self-consistent reflection models. These reflection models provide…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral shape analysis010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaResolution (electron density)FOS: Physical sciencesFluxAstronomy and AstrophysicsAstrophysicsRadius01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaSoft stateSpace and Planetary Science0103 physical sciencesformation line: identification stars: neutron stars: individual: 4U 1705-44 X-rays: binaries X-rays: general [line]Reflection (physics)Thick diskline: formation line: identification stars: neutron stars: individual: 4U 1705-44 X-rays: binaries X-rays: generalAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsEnergy (signal processing)
researchProduct

X-ray spectroscopy of MXB 1728-34 with XMM-Newton

2011

We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaBolometerFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general [line]01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary Sciencelaw0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsline: formation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general
researchProduct

Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

2014

When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different co…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion discs line: identification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1)Spectral shape analysisAccretion (meteorology)Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineNeutron starAmplitudeidentification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1) [accretion accretion discs line]Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Emission spectrumAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

The spin and orbit of the newly discovered pulsar IGR J17480-2446

2011

We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyAngular momentumAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars neutron stars rotation X-rays binaries pulsars individual IGR J17480-2446Accretion (astrophysics)LuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceGlobular clusterAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaeducationAstrophysics::Galaxy Astrophysics
researchProduct