Search results for "BINARY"

showing 10 items of 833 documents

Efficient generation of restricted growth words

2013

A length n restricted growth word is a word w=w"1w"2...w"n over the set of integers where w"1=0 and each w"i, i>1, lies between 0 and the value of a word statistics of the prefix w"1w"2...w"i"-"1 of w, plus one. Restricted growth words simultaneously generalize combinatorial objects as restricted growth functions, staircase words and ascent or binary sequences. Here we give a generic generating algorithm for restricted growth words. It produces a Gray code and runs in constant average time provided that the corresponding statistics has some local properties.

010102 general mathematicsBinary numberValue (computer science)0102 computer and information sciences[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesComputer Science ApplicationsTheoretical Computer SciencePrefixCombinatoricsGray code010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Signal ProcessingPartial word0101 mathematicsConstant (mathematics)ComputingMilieux_MISCELLANEOUSWord (group theory)Information SystemsMathematicsInformation Processing Letters
researchProduct

2020

Recent experiments have demonstrated the formation of free-standing Au monolayers by exposing the Au–Ag alloy to electron beam irradiation. Inspired by this discovery, we used semi-empirical effective medium theory simulations to investigate monolayer formation in 30 different binary metal alloys composed of late d-series metals such as Ni, Cu, Pd, Ag, Pt, and Au. In qualitative agreement with the experiment, we find that the beam energy required to dealloy Ag atoms from the Au–Ag alloy is smaller than the energy required to break the dealloyed Au monolayer. Our simulations suggest that a similar method could also be used to form Au monolayers from the Au–Cu alloy and Pt monolayers from Pt–…

010302 applied physicsMaterials scienceAlloyGeneral Physics and AstronomyBinary number02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMetalElectron beam irradiationvisual_art0103 physical sciencesMonolayerengineeringvisual_art.visual_art_medium0210 nano-technologyBeam energyAIP Advances
researchProduct

A multilayer model for self-propagating high-temperature synthesis of inter-metallic compounds

2007

International audience; Self-propagating high-temperature synthesis of intermetallic compounds is of wide interest. We consider reactions in a binary system in which the rise and fall of the temperature during the reaction is such that one of the reacting metals melts but not the other. For such a system, using the phase diagram of the binary system, we present a general theory that describes the reaction taking place in a single solid particle of one component surrounded by the melt of the second component. The theory gives us a set of kinetic equations that describe the propagation of the phase interfaces in the solid particle and the change in composition of the melt that surrounds it. I…

010302 applied physicsMaterials scienceComponent (thermodynamics)IntermetallicSelf-propagating high-temperature synthesisBinary compoundThermodynamics02 engineering and technology021001 nanoscience & nanotechnologySystem of linear equations01 natural sciencesSurfaces Coatings and Filmschemistry.chemical_compoundCrystallography[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]chemistryPhase (matter)0103 physical sciencesMaterials ChemistryBinary system[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical Chemistry0210 nano-technologyPhase diagram
researchProduct

Elucidating the Influence of the Activation Energy on Reaction Rates by Simulations Based on a Simple Particle Model

2020

An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based on a 2D realistic dynamic model where atoms move because of their thermal energies and the trajectories are determined by solving numerically Newton’s laws according to a Molecular Dynamics (MD) scheme. Collisions are monitored as time progresses, and every time the collision energy is larger than the selected activation energy, a reactive event oc…

010405 organic chemistry05 social sciencesIsotropyKinetics050301 educationBinary numberGeneral ChemistryActivation energy01 natural sciences0104 chemical sciencesEducationReaction rateHigh School/Introductory Chemistry First-Year Undergraduate/General Physical Chemistry Chemoinformatics Computer-Based Learning Kinetics Kinetic-Molecular TheorySimple (abstract algebra)Chemical physicsMolecule0503 educationEnergy (signal processing)Settore CHIM/02 - Chimica Fisica
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

IGR J17329-2731: The birth of a symbiotic X-ray binary

2018

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesFluxAstrophysicsCompact star01 natural sciencesSpectral linelaw.inventionTelescopeSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieNeutron starX-rays: individuals: IGR J17329-273113. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Variational Approximations for Generalized Linear Latent Variable Models

2017

Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal likelihood does not possess a closed form for nonnormal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed-form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variabl…

0106 biological sciencesStatistics and ProbabilityMathematical optimizationBinary numberfactor analysisLatent variableordination010603 evolutionary biology01 natural sciences010104 statistics & probabilityItem response theoryDiscrete Mathematics and CombinatoricsApplied mathematicslatent trait0101 mathematicsLatent variable modelMathematicsta112item response theoryFunction (mathematics)Latent class modelMarginal likelihoodfaktorianalyysipappisvihkimysmultivariate analysisvariational approximationStatistics Probability and UncertaintyCount data
researchProduct

Modelling binary mixtures of herbicides in populations resistant to one of the components: evaluation for resistance management

2008

BACKGROUND: Herbicide mixtures are commonly proposed to delay the selection of herbicide resistance in susceptible populations (called the SM strategy). However, in practice, herbicide mixtures are often used when resistance to one of the two active ingredients has already been detected in the targeted population (called the RM strategy). It is doubtful whether such a practice can select against resistance, as the corresponding selection pressure is still exerted. As a consequence, the effect of mixtures on the evolution of an already detected resistance to one of the herbicides in the combination remains largely unexplored. In the present work, a simple model was developed to explore furth…

0106 biological scienceseducation.field_of_studyPesticide resistanceResistance (ecology)business.industryPopulationBinary number04 agricultural and veterinary sciencesGeneral Medicine01 natural sciencesBiotechnologyInsect Science040103 agronomy & agricultureHerbicide resistance0401 agriculture forestry and fisheriesBiochemical engineeringeducationbusinessAgronomy and Crop ScienceSelection (genetic algorithm)010606 plant biology & botanyMathematicsPest Management Science
researchProduct