Search results for "BIODEGRADABLE"
showing 10 items of 141 documents
Recovery of polyhydroxyalkanoates (PHAs) from wastewater : a review
2020
Abstract Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical…
Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver
2018
Liver fibrogenesis is associated with excessive production of extracellular matrix by myofibroblasts that often leads to cirrhosis and consequently liver dysfunction and death. Novel protein-based antifibrotic drugs show high specificity and efficacy, but their use in the treatment of fibrosis causes a high burden for patients, since repetitive and long-term parenteral administration is required as most proteins and peptides are rapidly cleared from the circulation. Therefore, we developed biodegradable polymeric microspheres for the sustained release of proteinaceous drugs. We encapsulated the drug carrier pPB-HSA, which specifically binds to the PDGF beta R that is highly upregulated on a…
Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths
2020
Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demoldin…
Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer.
2013
Current extracellular matrix (ECM) derived scaffolds offer promising regenerative responses in many settings, however in some applications there may be a desire for more robust and long lasting mechanical properties. A biohybrid composite material that offers both strength and bioactivity for optimal healing towards native tissue behavior may offer a solution to this problem. A regionally distinct biocomposite scaffold composed of a biodegradable elastomer (poly(ester urethane)urea) and porcine dermal ECM gel was generated to meet this need by a concurrent polymer electrospinning/ECM gel electrospraying technique where the electrosprayed component was varied temporally during the processing…
Durability of Biodegradable Polymer Nanocomposites
2021
Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the…
Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites
2016
In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…
Study of the chemical, physical and functional properties of edible starch-based films
2016
The amount of waste increased annually, mainly from plastic industry. Plastic materials were more produced during the only last ten years than during the last millennium. A potential solution of the ecological and economic problems can be biodegradable or edible films and coatings. The goal of this thesis was to study edible films and coatings based on starch. Fifteen types of film-forming solutions were made: 3 types of starch, starch + different amounts of plasticizer, starch + proteins, starch + oil. To better understanding the interaction between film components, physical, chemical and functional tests were done. Finnaly, validation on real foods (plums) as coatings and films helped to …
The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend
2020
The formulation of polymeric films endowed with the abilities of controlled release of antimicrobials and biodegradability is the latest trend of food packaging. Biodegradable polymer (Bio-Flex®
BIODEGRADING BIOFILMS ON INNOVATIVE BIOPOLYMERIC SUPPORTS
2022
ABSTRACT Water bioremediation is traditionally carried out using ‘ free ’ bacterial cells, however, in recent years, utilization of ‘immobilized’ bacterial cells on adsorbing matrices, has gained attention as a promising technique due to biotechnological and economic benefits (Sonawane et al., 2022). Bacterial biofilms show greater resilience, survival and degradative activity for longer periods than cells in the planktonic state (Alessandrello et al., 2017); moreover immobilization reduces bioremediation costs, eliminate cell dilution and dispersion in the environment (Bayat et al., 2015). Possible applications of immobilized biodegrading bacteria require long-term survival and maintenance…
Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics
2019
Abstract In this work, the feasibility of antibacterial biopolymeric foams containing carvacrol (CRV) for potential food packaging applications was investigated. Sodium bicarbonate (SB) was chosen as foaming agent and a commercial biodegradable polymer, Mater-Bi® (MB), as a matrix. MB/SB and MB/SB/CRV systems were prepared by melt mixing and the foaming process was conducted in a laboratory press. The influence of foaming agent and antibacterial additive content was investigated. The foamed samples were characterized through morphological analysis, mechanical tests and measurements of CRV release kinetics. Moreover, a mathematical model, i.e. power law model, was used to fit the release dat…