Search results for "BIOMATERIAL"
showing 10 items of 1350 documents
Rat Cardiac progenitor cells and their application in cell therapy
2015
cells and the subsequent heart failure. When the pharmacological approach no longer complies with the disease evolution, organ transplantation appears to be the only treatment able to rescue the patient life. Cell therapy promises to be clinically efficient and would allow circumventing many limitations of organ transplantation, such as organ low availability, major surgical procedures, high costs and longterm immunosuppression [1]. We designed porous Poly-Lactic Acid (PLLA) and Fibroin scaffolds to deliver CPCs in the heart, we isolated and characterized CPCs for the expression of c-Kit, MDR-1 and Sca-1 by flow cytometry, we tested their degree of differentiation in vitro studying the expr…
A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles
2019
Abstract Hypothesis Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles. Experiments We st…
Measuring optical anisotropy in poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films with added graphene
2015
Abstract Graphene is a 2D nanomaterial having a great potential for applications in electronics and optoelectronics. Composites of graphene with conducting polymers have shown high performance in practical devices and their solution-processability enables low-cost and high-throughput mass manufacturing using printing techniques. Here we measure the effect of incorporation of graphene into poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to the optical anisotropy, absorbance and conductivity of the film. Uniaxial anisotropy in PEDOT:PSS films has been thought to be caused by the spin-coating process used in fabrication. We have characterized spray- and spin-coated films …
Stem cells from human dental pulp and apical papilla: Morphological and synchrotron radiation analysis
2021
Background Dental Mesenchymal stem cells has prompted great for cell-based therapeutics. But no one knows for sure what the true potential of these cells, since most of the studies were done in isolation, using as source, different donors or different cell processing conditions. Material and Methods An enriched population of cells positive for CD146, STRO-1, and CD90 was isolated of third molars teeth indicated for extraction of patient with of 16 years old. Analysis of cell kinetics, and subcellular tests were performed to assess the presence of minor and trace elements by using synchrotron radiation x-ray fluorescence microscopy. Results In the cell kinetics assays, the enriched populatio…
Theoretical and experimental analysis of viscoelastic behavior of biomaterials
2014
Mechanisms of irreversible aquaporin-10 inhibition by organogold compounds studied by combined biophysical methods and atomistic simulations
2021
Abstract The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C–S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes. The obtained computational results by metadynamics show that the local arylation of Cys209 in hAQP10 by one of the gold inhibitors is mapped int…
Synergistic effect of W incorporation and pulsed current mode on wear and tribocorrosion resistance of coatings grown by plasma electrolytic oxidatio…
2019
Ceramic coatings were grown by plasma electrolytic oxidation on 7075 Al alloy using unipolar and bipolar pulsed current waveforms with 20 and 40% cathodic duty cycles, from a silicate-based bath without and with the addition of Na2WO4. Pancake-like morphology was dominant on the coatings grown by unipolar waveform, while the bipolar waveforms promoted volcano-like morphology, increased the roughness of the coating surface and the formation of more compact layers. The coatings produced using the bipolar waveforms provided higher resistances toward both tribocorrosion and dry sliding conditions, while further improvement was achieved by the presence of tungsten. The coatings produced in tungs…
Characterization of three-dimensional microstructure of composite materials by X-ray tomography
2016
Analysis methods for X-ray microtomographic images of short fibre composite materials were developed. The methods enable estimation of microstructural properties of the material, e.g., aspect ratio and orientation of fibres. Being based on X-ray microtomography and image analysis, the methods are nondestructive and do not require user intervention. In particular, a method for determination of the aspect ratio of fibres was first developed. The method contains an assumption about similarity of the shape of the fibres. The assumption was relaxed in an improved method that can estimate cross-sectional properties of fibres, too, e.g., cross-sectional area. Additionally, the effect of finite ima…
Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry
2021
Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30–50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-se…
Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs).
2020
Microrobots and metal–organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF‐based small‐scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro‐ and nanoswimmers including small‐scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selec…