Search results for "BLENDS"
showing 10 items of 67 documents
Compatibilization of blends of polyethylene with a semirigid liquid crystalline polymer by PE-g-LCP copolymers
1997
The blends of thermoplastics with liquid crystalline polymers show, in general, poor properties because of the lack of adherence between the two phases. The use of ad hoc synthesized copolymers containing the monomer units of the two polymers has been recently considered by some of us for blend compatibilization, and the results appear promising. In this work, new PE-g-LCP copolymers, prepared either by the synthesis of the LCP in the presence of a functionalized PE, or by reactive blending of the latter polymer with preformed LCP, have been employed as compatibilizing additives for blends of PE with a semirigid LCP. The morphology and the rheological and mechanical properties of the ternar…
Time–carbonyl groups equivalence in photo-oxidative aging of virgin/recycled polymer blends
2004
AbstractThe photo-oxidation behaviour of polymers is strongly dependent on the initial amount of carbonyl groups along the chains. The growing use of recycled post-consumer polymers coming from products used outdoors and then photo-oxidised, both pure and blended with the same virgin polymer, gives rise to an unpredictable behaviour of weathering resistance of products made with these materials. The present work shows that the carbonyl group–exposure time curves can be shifted along the time axis to give a single generalised master plot. It is then possible to predict the formation of the new carbonyl groups by knowing only the initial amount of the same carbonyl groups. The same shift fact…
Synthesis of PP-LCP graft copolymers and their compatibilizing activity for PP/LCP blends
1998
The aim of this work was the synthesis of new graft copolymers consisting of polypropylene (PP) backbones and liquid crystalline polymer (LCP) branches, to be used as compatibilizing agents for PP/LCP blends. The PP-g-LCP copolymers have been prepared by polycondensation of the monomers of a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2), that is, sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the mole ratio of 1 : 1 : 2, carried out in the presence of appropriate amounts of a commercial acrylic-acid-functionalized polypropylene (PPAA). The polycondensation products, referred to as COPP50 and COPP70, having a calculated PPAA concentration of 50 and…
PET/PEN Blends of Industrial Interest as Barrier Materials. Part I. Many-Scale Molecular Modeling of PET/PEN Blends
2006
Mesoscale molecular simulations, based on parameters obtained through atomistic molecular dynamics and Monte Carlo calculations, have been used for modeling and predicting the behavior of PET/PEN blends. Different simulations have been performed in order to study and compare pure homopolymer blends with blends characterized by the presence of PET/PEN block copolymers acting as compatibilizer. A many-scale molecular modeling strategy was devised to evaluate PET/PEN blend characteristics, simulate phase segregation in pure PET/PEN blends, and demonstrate the improvement of miscibility due to the presence of the transesterification reaction products. The behavior of distribution densities and …
A step forward in disclosing the secret of stradivari's varnish by NMR spectroscopy
2017
It is commonly thought that the varnishes used by the great violin-maker Antonio Stradivari may have a role in determining not only the esthetical features but also the acoustic properties of his instruments, and the idea of a “lost secret” is still widespread among musicians and violin-makers. Previous scientific researches on varnish samples of Stradivari's instruments revealed that they were generally made by a mix of linseed oil with and colophony or metal rosinates in different ratios ranging between 75/25 (oil/resin) and 60/40 (oil/rosinate). However, it is still not clear whether the mixture composition can be related to any structural and/or functional feature of the resulting varni…
Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid)
2013
Poly(lactic acid) (PLA) is melt mixed with polyamide 11 (PA11) to obtain a heat-resistant fully bio-based blend with PLA as the dominant component. The goal is achieved by adding small amounts of organoclay (OMMT), which is used to manipulate the blend microstructure. The selective positioning of the OMMT inside the PA11 and at the PLA/PA11 interface turns the blend morphology from drop/matrix into co-continuous at high PLA content (70 wt%). The OMMT-rich PA11 framework that interpenetrates the major PLA phase effectively contributes to bear stresses, and the nanocomposite blend keeps its structural integrity up to ≈160 °C, i.e., about 100 °C above the PLA glass transition.
Sub-micron structured Polymethyl Methacrylate/Acrylonitrile-Butadiene rubber blends obtained via gamma radiation induced “in situ” polymerisation
2004
The morphology and properties of PMMA/rubber blends, obtained through gamma radiation induced “in situ” polymerization of methyl methacrylate (MMA) in the presence of small quantities of an acrylonitrile–butadiene based rubber (ABN), are presented. Different systems have been obtained by irradiating at a fixed irradiation dose rate and temperature, varying the integrated dose. All the blends obtained were characterized with respect to their melt state and solid state dynamic-mechanical response and mechanical tensile properties. In particular, the effect on the blend properties of prolonging the irradiation time was investigated. Furthermore, a morphological characterization through atomic …
Nanoscale chemistry and atomic-scale microstructure of a bulk Ni3Sn material built using selective laser melting of elemental powder blends
2021
Abstract Cubic specimens of the intermetallic Ni3Sn compound were built using selective laser melting of elemental powder blends. A specimen built at a laser power of 200 W and a scanning speed of 0.5 m/s was determined to have a homogeneous distribution of Ni and Sn on a mesoscopic scale in spite of a 2 at.% Sn deficiency. Characterization of the microstructure using the HAADF-STEM technique reveals a dispersion of ultrafine Ni particles, nanoscale chemical inhomogeneity and the formation of antiphase nanodomains in the matrix of equiaxed Ni3Sn grains. While a mesoscopic homogeneity of the specimen demonstrates a prospect of additive manufacturing of a bulk intermetallic material using sel…
Morphology, Rheological and Mechanical Properties of Isotropic and Anisotropic PP/rPET/GnP Nanocomposite Samples
2021
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight incre…
Reprocessing of polyethyleneterephthalate and characterisation of monopolymer blends of virgin and recycled polymers
1997
Recycling of polyethyleneterephthalate (PET from bottles is considered by changing both reprocessing machines and the effect of humidity. The rheological and mechanical properties of this recycled material remain very close to that of the virgin material provided that a careful drying is carried out before any melt operation. The reprocessing has been carried out mainly in view of the use of this secondary material in blends with virgin PET-monopolymer or homopolymer blends. Indeed, this use is a common industrial practice to reuse plastic scraps. Most monopolymer blends show properties between those of the two components but in some cases lower than those expected on the basis of an additi…